Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
No edit summary
Line 67: Line 67:
  ''Last update: 2023-10-24''
  ''Last update: 2023-10-24''


::: <big>'''From CGpDH and other pathways to FADH<sub>2</sub> to CII?'''</big>
=== SDH: FAD ⟶ FADH<sub>2</sub>; CII: FADH<sub>2</sub> ⟶ FAD ===


[[File:Blanco 2017 Academic Press CORRECTION.png|300px|link=Blanco 2017 Academic Press]] <big><big>///</big></big> [[File:Willson 2022 Blood CORRECTION.png|300px|link=Willson 2022 Blood]]  <big><big>///</big></big>  [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|300px|link=Rai 2022 G3 (Bethesda)]] <big><big>///</big></big> [[File:Koopman 2016 Nat Protoc CORRECTION.png|300px|link=Koopman 2016 Nat Protoc]]
:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::: ''Comment'' ([[Cardoso Luiza]], [[Gnaiger Erich]], 2023-08-06):
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
'''Fig. 9.19 from [[Blanco 2017 Academic Press| Blanco, Blanco (2017)]]''', '''Fig. 1 from [[Willson 2022 Blood| Willson et al (2022)]]''', and '''Fig. 1 from [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]''' show FADH<sub>2</sub> <span style="color:red">(1)</span> to be formed in the mitochondrial matrix from <span style="color:red">GPDH</span>, GPD2, or <span style="color:red">GPO1</span> (all indicating [[CGpDH]]) and from the TCA cycle ('''Fig. 1 [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]'''), then <span style="color:red">(2)</span> feeding electrons further '<span style="color:red">To respiratory chain</span>', the 'ETC', or 'Electron Transport Chain' ([[ETS]]). Combined with FADH<sub>2</sub> shown <span style="color:red">(1)</span> to be formed in the mt-matrix from the TCA cycle and <span style="color:red">(2)</span> feeding into CII ('''Fig. 1 from [[Koopman 2016 Nat Protoc| Koopman et al (2016)]]'''; among >120 examples discussed as CII-[[Ambiguity crisis |ambiguities]]), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.
<br>


:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::: '''xx''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
<br>
<br>


:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::: '''xx''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''xx''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''c''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
<br>
<br>


:::::: [[File:Begum 2023 WIREs Mech Dis CORRECTION.png|400px|link=Begum 2023 WIREs Mech Dis]]
:::: '''xx''' Begum HM, Shen K (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. ‘’’WIREs Mech Dis‘‘‘ 15:e1595. - [[Begum 2023 WIREs Mech Dis |»Bioblast link«]]
<br>


<big>'''Addition to Figure 5: FAO and CII ambiguitiy'''</big>


:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::::: [[File:Bhargava 2017 Nat Rev Nephrol CORRECTION.png|400px|link=Bhargava 2017 Nat Rev Nephrol]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
:::: '''xx''' Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. '''Nat Rev Nephrol''' 13:629-46. - [[Bhargava 2017 Nat Rev Nephrol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::::: [[File:Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png|400px|link=Boukalova 2020 Biochim Biophys Acta Mol Basis Dis]]
:::: '''xx''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:::: '''xx''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. '''Biochim Biophys Acta Mol Basis Dis''' 1866:165759. - [[Boukalova 2020 Biochim Biophys Acta Mol Basis Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::::: [[File:Camara 2011 Front Physiol CORRECTION.png|250px|link=Camara 2011 Front Physiol]]
:::: '''xx''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
:::: '''xx''' Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. ‘’’Front Physiol’’’ 2:13. - [[Camara 2011 Front Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cortassa 2019 Front Physiol CORRECTION.png|250px|link=Cortassa 2019 Front Physiol]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''xx''' Cortassa S, Aon MA, Sollott SJ (2019) Control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks. A systems biology analysis. '''Front Physiol''' 10:201. - [[Cortassa 2019 Front Physiol |»Bioblast link«]]
:::: '''g''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]  
:::: '''xx''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
:::: '''d,e''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]  
<br>
<br>


:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::: '''xx''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
:::: '''xx''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
<br>
<br>


:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
:::: '''xx''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::: '''xx''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
:::: '''l''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
<br>
<br>


:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
:::: '''f''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::::: [[File:Du 2023 bioRxiv CORRECTION.png|400px|link=Du 2023 bioRxiv]]
:::: '''xx''' Kikusato M, Furukawa K, Kamizono T, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
:::: '''xx''' Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. '''bioRxiv''' 2023.05.24.542198. - [[Du 2023 bioRxiv |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::: '''xx''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''xx''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|250px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::: '''xx''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
:::: '''xx''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::::: [[File:Fahlbusch 2022 Int J Mol Sci CORRECTION.png|250px|link=Fahlbusch 2022 Int J Mol Sci]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
:::: '''xx''' Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. '''Int J Mol Sci''' 23:6873. - [[Fahlbusch 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
:::: '''i''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::::: [[File:Fromenty 2023 J Hepatol CORRECTION.png|250px|link=Fromenty 2023 J Hepatol]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
:::: '''xx''' Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. '''J Hepatol''' 78:415-29. - [[Fromenty 2023 J Hepatol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|300px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::::: [[File:Gammon 2019 Cells CORRECTION.png|400px|link=Gammon 2019 Cells]]
:::: '''xx''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
:::: '''xx''' Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET ''in vivo''. '''Cells''' 8:1487. - [[Gammon 2019 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Murray 2009 Genome Med CORRECTION.png|300px|link=Murray 2009 Genome Med]]
:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
:::: '''j''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
<br>
<br>


:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
:::: '''l''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Picard 2018 Biol Psychiatry CORRECTION.png|250px|link=Picard 2018 Biol Psychiatry]]
:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::: '''xx''' Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. '''Psychosom Med''' 80:141-53. - [[Picard 2018 Psychosom Med |»Bioblast link«]]
:::: '''xx''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
:::::: '''xx''' Copied by: Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. '''Biol Psychiatry''' 84:9-17. - [[Picard 2018 Biol Psychiatry |»Bioblast link«]]
:::::: '''xx''' Copied by: Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. '''Brain Behav Immun Health''' 5:100080. - [[Karan 2020 Brain Behav Immun Health |»Bioblast link«]]
:::::: '''xx''' Copied by: Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. '''Sci Rep''' 11:11595. - [[Bindra 2021 Sci Rep |»Bioblast link«]]
:::::: '''xx''' Copied by: Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. '''Elife''' 10:e70899. - [[Rausser 2021 Elife |»Bioblast link«]]
<br>
<br>


:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|300px|link=Prasun 2020 J Diabetes Metab Disord]]
:::::: [[File:Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png|250px|link=Jaramillo-Jimenez 2023 Mitochondrion]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
:::: '''xx''' Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. '''Mitochondrion''' 71:17-25. - [[Jaramillo-Jimenez 2023 Mitochondrion |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''n''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. '''Elsevier''' In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |»Bioblast link«]]
:::: '''xx''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:::: '''xx''' Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::: '''xx''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
:::: '''xx''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
<br>
<br>


:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::: '''xx''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
:::: '''xx''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::: '''xx''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
<br>


:::::: [[File:CHM333 LECTURES CORRECTION.png|250px]]
:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::: '''xx''' [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna]
:::: '''p''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
<br>


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::: '''q''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
<br>
<br>


<big>'''Additions to Supplements'''</big>
:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
<br>


:::::: [[File:Achreja 2022 Nat Metab CORRECTION.png|400px|link=Achreja 2022 Nat Metab]]
:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]  
:::: '''xx''' Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. '''Nat Metab''' 4:1119-37. - [[Achreja 2022 Nat Metab |»Bioblast link«]]
:::: '''r''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]  
<br>
<br>


:::::: [[File:Alegre 2019 Am J Transplant CORRECTION.png|400px|link=Alegre 2019 Am J Transplant]]
:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::: '''xx''' Alegre ML (2019) Treg respiration. '''Am J Transplant''' 19:969. - [[Alegre 2019 Am J Transplant |»Bioblast link«]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ali 2023 Trends Cell Biol CORRECTION.png|400px|link=Ali 2023 Trends Cell Biol]]
:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
:::: '''xx''' Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. '''Trends Cell Biol''' 33:950-66. - [[Ali 2023 Trends Cell Biol |»Bioblast link«]]
:::: '''s''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: '''xx''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
:::: '''t''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Andrieux 2021 Int J Mol Sci CORRECTION.png|400px|link=Andrieux 2021 Int J Mol Sci]]
:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::: '''xx''' Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. '''Int J Mol Sci''' 22:11338. - [[Andrieux 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''u''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::: '''xx''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
:::: '''w''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
:::: '''xx''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bayona-Bafaluy 2021 Redox Biol CORRECTION.png|400px|link=Bayona-Bafaluy 2021 Redox Biol]]
:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::: '''xx''' Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - [[Bayona-Bafaluy 2021 Redox Biol |»Bioblast link«]]
:::: '''xx''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::::: [[File:Sadri 2023 Arch Biochem Biophys CORRECTION.png|400px|link=Sadri 2023 Arch Biochem Biophys]]
:::: '''xx''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
:::: '''xx''' Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH<sub>2</sub> linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. '''Arch Biochem Biophys''' 744:109690. - [[Sadri 2023 Arch Biochem Biophys |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png|400px|link=Bellance 2009 Front Biosci (Landmark Ed)]]
:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::: '''xx''' Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. '''Front Biosci (Landmark Ed)''' 14:4015-34. - [[Bellance 2009 Front Biosci (Landmark Ed) |»Bioblast link«]]
:::: '''μ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Bennett 2022 Nat Rev Mol Cell Biol]]
:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::: '''xx''' Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. '''Nat Rev Mol Cell Biol''' 23:817-35. - [[Bennett 2022 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''xx''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bernardo 2013 Biol Chem CORRECTION.png|400px|link=Bernardo 2013 Biol Chem]]
:::::: [[File:Schwartz 2022 JACC Basic Transl Sci CORRECTION.png|400px|link=Schwartz 2022 JACC Basic Transl Sci]]
:::: '''xx''' Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. '''Biol Chem''' 394:1607-14. - [[Bernardo 2013 Biol Chem |»Bioblast link«]]
:::: '''xx''' Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. '''JACC Basic Transl Sci''' 7:1161-79. - [[Schwartz 2022 JACC Basic Transl Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::::: [[File:Shen 2021 Cells CORRECTION.png|400px|link=Shen 2021 Cells]]
:::: '''xx''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:::: '''xx''' Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. '''Cells''' 10:1772. - [[Shen 2021 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bhalerao 2012 Science CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: '''xx''' Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. '''Science 336:1241-2. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
:::: '''x''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bhargava 2017 Nat Rev Nephrol CORRECTION.png|400px|link=Bhargava 2017 Nat Rev Nephrol]]
:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''xx''' Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. '''Nat Rev Nephrol''' 13:629-46. - [[Bhargava 2017 Nat Rev Nephrol |»Bioblast link«]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Blanco 2017 Academic Press CORRECTION.png|400px|link=Blanco 2017 Academic Press]]
:::::: [[File:Wilson 2023 Trends Cell Biol CORRECTION.png|400px|link=Wilson 2023 Trends Cell Biol]]
:::: '''xx''' Blanco A, Blanco G (2017) Chapter 9 - Biological oxidations: bioenergetics. In Blanco A, Blanco G, eds, Medical biochemistry. '''Academic Press''':177-204. - [[Blanco 2017 Academic Press |»Bioblast link«]]
:::: '''xx''' Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. '''Trends Cell Biol''' 33:788-802. - [[Wilson 2023 Trends Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png|400px|link=Boukalova 2020 Biochim Biophys Acta Mol Basis Dis]]
:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::: '''xx''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. '''Biochim Biophys Acta Mol Basis Dis''' 1866:165759. - [[Boukalova 2020 Biochim Biophys Acta Mol Basis Dis |»Bioblast link«]]
:::: '''xx''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
<br>
<br>
 
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::: '''xx''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Breuer 2013 Neurobiol Dis CORRECTION.png|400px|link=Breuer 2013 Neurobiol Dis]]
:::: '''xx''' Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - [[Breuer 2013 Neurobiol Dis |»Bioblast link«]]
<br>


:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
=== FADH<sub>2</sub> ⟶ FAD ===
:::: '''xx''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
<br>


:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::: '''xx''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
<br>


:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
<big>'''Additions to Supplements'''</big>
:::: '''xx''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
 
:::::: [[File:Achreja 2022 Nat Metab CORRECTION.png|400px|link=Achreja 2022 Nat Metab]]
:::: '''xx''' Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. '''Nat Metab''' 4:1119-37. - [[Achreja 2022 Nat Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Catania 2019 Orphanet J Rare Dis CORRECTION.png|400px|link=Catania 2019 Orphanet J Rare Dis]]
:::::: [[File:Alegre 2019 Am J Transplant CORRECTION.png|400px|link=Alegre 2019 Am J Transplant]]
:::: '''xx''' Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. '''Orphanet J Rare Dis''' 14:236. - [[Catania 2019 Orphanet J Rare Dis |»Bioblast link«]]
:::: '''xx''' Alegre ML (2019) Treg respiration. '''Am J Transplant''' 19:969. - [[Alegre 2019 Am J Transplant |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::::: [[File:Ali 2023 Trends Cell Biol CORRECTION.png|400px|link=Ali 2023 Trends Cell Biol]]
:::: '''xx''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
:::: '''xx''' Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. '''Trends Cell Biol''' 33:950-66. - [[Ali 2023 Trends Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png|250px|link=Chang 2023 Front Endocrinol (Lausanne)]]
:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::: '''xx''' Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. '''Front Endocrinol (Lausanne)''' 14:1106544. - [[Chang 2023 Front Endocrinol (Lausanne) |»Bioblast link«]]
:::: '''xx''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Che 2023 Plant Cell Environ CORRECTION.png|250px|link=Che 2023 Plant Cell Environ]]
:::::: [[File:Andrieux 2021 Int J Mol Sci CORRECTION.png|400px|link=Andrieux 2021 Int J Mol Sci]]
:::: '''xx''' Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. '''Plant Cell Environ''' 46:2841-50. - [[Che 2023 Plant Cell Environ |»Bioblast link«]]
:::: '''xx''' Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. '''Int J Mol Sci''' 22:11338. - [[Andrieux 2021 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chen 2014 Circ Res CORRECTION.png|250px|link=Chen 2014 Circ Res]]
:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::: '''xx''' Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. '''Circ Res''' 114:524-37. - [[Chen 2014 Circ Res |»Bioblast link«]]
:::: '''xx''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
:::::* Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chinopoulos 2013 J Neurosci Res CORRECTION.png|400px|link=Chinopoulos 2013 J Neurosci Res]]
:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::: '''xx''' Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. '''J Neurosci Res''' 91:1030-43. - [[Chinopoulos 2013 J Neurosci Res |»Bioblast link«]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
<br>
<br>


:::::: [[File:Choudhury 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Choudhury 2021 Antioxidants (Basel)]]
:::::: [[File:Bayona-Bafaluy 2021 Redox Biol CORRECTION.png|400px|link=Bayona-Bafaluy 2021 Redox Biol]]
:::: '''xx''' Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. '''Antioxidants (Basel)''' 10:1838. - [[Choudhury 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - [[Bayona-Bafaluy 2021 Redox Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::::: [[File:Begriche 2011 J Hepatol CORRECTION.png|250px|link=Begriche 2011 J Hepatol]]
:::: '''xx''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
:::: '''xx''' Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. '''J Hepatol''' 54:773-94. - [[Begriche 2011 J Hepatol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::::: [[File:Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png|400px|link=Bellance 2009 Front Biosci (Landmark Ed)]]
:::: '''xx''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. '''Front Biosci (Landmark Ed)''' 14:4015-34. - [[Bellance 2009 Front Biosci (Landmark Ed) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Connolly 2018 Cell Death Differ CORRECTION.png|400px|link=Connolly 2018 Cell Death Differ]]
:::::: [[File:Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Bennett 2022 Nat Rev Mol Cell Biol]]
:::: '''xx''' Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. '''Cell Death Differ''' 25:542-72. - [[Connolly 2018 Cell Death Differ |»Bioblast link«]]
:::: '''xx''' Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. '''Nat Rev Mol Cell Biol''' 23:817-35. - [[Bennett 2022 Nat Rev Mol Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Covarrubias 2021 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Covarrubias 2021 Nat Rev Mol Cell Biol]]
:::::: [[File:Bernardo 2013 Biol Chem CORRECTION.png|400px|link=Bernardo 2013 Biol Chem]]
:::: '''xx''' Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD+ metabolism and its roles in cellular processes during ageing. '''Nat Rev Mol Cell Biol''' 22:119-41. - [[Covarrubias 2021 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''xx''' Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. '''Biol Chem''' 394:1607-14. - [[Bernardo 2013 Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::: '''xx''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
:::: '''xx''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Dawson 2021 Open Library CORRECTION.png|400px|link=Dawson 2021 Open Library]]
:::::: [[File:Bhalerao 2012 Science CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::: '''xx''' Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. '''Open Library'''. - [[Dawson 2021 Open Library |»Bioblast link«]]
:::: '''xx''' Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. '''Science 336:1241-2. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::::: [[File:Bhargava 2017 Nat Rev Nephrol CORRECTION.png|400px|link=Bhargava 2017 Nat Rev Nephrol]]
:::: '''xx''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
:::: '''xx''' Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. '''Nat Rev Nephrol''' 13:629-46. - [[Bhargava 2017 Nat Rev Nephrol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::::: [[File:Blanco 2017 Academic Press CORRECTION.png|400px|link=Blanco 2017 Academic Press]]
:::: '''xx''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
:::: '''xx''' Blanco A, Blanco G (2017) Chapter 9 - Biological oxidations: bioenergetics. In Blanco A, Blanco G, eds, Medical biochemistry. '''Academic Press''':177-204. - [[Blanco 2017 Academic Press |»Bioblast link«]]
<br>
<br>


:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::::: [[File:Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png|400px|link=Boukalova 2020 Biochim Biophys Acta Mol Basis Dis]]
:::: '''xx''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
:::: '''xx''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. '''Biochim Biophys Acta Mol Basis Dis''' 1866:165759. - [[Boukalova 2020 Biochim Biophys Acta Mol Basis Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::: '''xx''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
:::: '''xx''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Du 2023 bioRxiv CORRECTION.png|400px|link=Du 2023 bioRxiv]]
:::::: [[File:Breuer 2013 Neurobiol Dis CORRECTION.png|400px|link=Breuer 2013 Neurobiol Dis]]
:::: '''xx''' Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. '''bioRxiv''' 2023.05.24.542198. - [[Du 2023 bioRxiv |»Bioblast link«]]
:::: '''xx''' Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - [[Breuer 2013 Neurobiol Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Duan 2019 Aging (Albany NY) CORRECTION.png|400px|link=Duan 2019 Aging (Albany NY)]]
:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::: '''xx''' Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. '''Aging (Albany NY)''' 11:7307-27. - [[Duan 2019 Aging (Albany NY) |»Bioblast link«]]
:::: '''xx''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
<br>
<br>


:::::: [[File:Dumollard 2007 Development CORRECTION.png|400px|link=Dumollard 2007 Development]]
:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::: '''xx''' Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. '''Development''' 134:455-65. - [[Dumollard 2007 Development |»Bioblast link«]]
:::: '''xx''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
:::: '''xx''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
:::: '''xx''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ekbal 2013 Chest CORRECTION.png|400px|link=Ekbal 2013 Chest]]
:::::: [[File:Catania 2019 Orphanet J Rare Dis CORRECTION.png|400px|link=Catania 2019 Orphanet J Rare Dis]]
:::: '''xx''' Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. '''Chest''' 143:1799-1808. - [[Ekbal 2013 Chest |»Bioblast link«]]
:::: '''xx''' Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. '''Orphanet J Rare Dis''' 14:236. - [[Catania 2019 Orphanet J Rare Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::: '''xx''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
:::: '''xx''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|250px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::::: [[File:Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png|250px|link=Chang 2023 Front Endocrinol (Lausanne)]]
:::: '''xx''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
:::: '''xx''' Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. '''Front Endocrinol (Lausanne)''' 14:1106544. - [[Chang 2023 Front Endocrinol (Lausanne) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Fahlbusch 2022 Int J Mol Sci CORRECTION.png|250px|link=Fahlbusch 2022 Int J Mol Sci]]
:::::: [[File:Che 2023 Plant Cell Environ CORRECTION.png|250px|link=Che 2023 Plant Cell Environ]]
:::: '''xx''' Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. '''Int J Mol Sci''' 23:6873. - [[Fahlbusch 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. '''Plant Cell Environ''' 46:2841-50. - [[Che 2023 Plant Cell Environ |»Bioblast link«]]
<br>
<br>


:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|250px|link=Faria 2023 Pharmaceutics]]
:::::: [[File:Chen 2014 Circ Res CORRECTION.png|250px|link=Chen 2014 Circ Res]]
:::: '''xx''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
:::: '''xx''' Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. '''Circ Res''' 114:524-37. - [[Chen 2014 Circ Res |»Bioblast link«]]
:::::* Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Favia 2019 J Clin Med CORRECTION.png|250px|link=Favia 2019 J Clin Med]]
:::::: [[File:Chinopoulos 2013 J Neurosci Res CORRECTION.png|400px|link=Chinopoulos 2013 J Neurosci Res]]
:::: '''xx''' Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. '''J Clin Med''' 8:1890. - [[Favia 2019 J Clin Med |»Bioblast link«]]
:::: '''xx''' Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. '''J Neurosci Res''' 91:1030-43. - [[Chinopoulos 2013 J Neurosci Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Floenes 2022 Front Cell Dev Biol CORRECTION.png|250px|link=Floenes 2022 Front Cell Dev Biol]]
:::::: [[File:Choudhury 2021 Antioxidants (Basel) CORRECTION.png|400px|link=Choudhury 2021 Antioxidants (Basel)]]
:::: '''xx''' Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? '''Front Cell Dev Biol''' 10:874596. - [[Floenes 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. '''Antioxidants (Basel)''' 10:1838. - [[Choudhury 2021 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Fogg 2011 Chin J Cancer CORRECTION.png|250px|link=Fogg 2011 Chin J Cancer]]
:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::: '''xx''' Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. '''Chin J Cancer''' 30:526-39. - [[Fogg 2011 Chin J Cancer |»Bioblast link«]]
:::: '''xx''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
<br>
<br>


:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::: '''xx''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
:::: '''xx''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Forbes 2018 Nat Rev Nephrol CORRECTION.png|250px|link=Forbes 2018 Nat Rev Nephrol]]
:::::: [[File:Connolly 2018 Cell Death Differ CORRECTION.png|400px|link=Connolly 2018 Cell Death Differ]]
:::: '''xx''' Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. '''Nat Rev Nephrol''' 14:291-312. - [[Forbes 2018 Nat Rev Nephrol |»Bioblast link«]]
:::: '''xx''' Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. '''Cell Death Differ''' 25:542-72. - [[Connolly 2018 Cell Death Differ |»Bioblast link«]]
<br>
<br>


:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::::: [[File:Covarrubias 2021 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Covarrubias 2021 Nat Rev Mol Cell Biol]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
:::: '''xx''' Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD+ metabolism and its roles in cellular processes during ageing. '''Nat Rev Mol Cell Biol''' 22:119-41. - [[Covarrubias 2021 Nat Rev Mol Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Fromenty 2023 J Hepatol CORRECTION.png|250px|link=Fromenty 2023 J Hepatol]]
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::: '''xx''' Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. '''J Hepatol''' 78:415-29. - [[Fromenty 2023 J Hepatol |»Bioblast link«]]
:::: '''xx''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::::: [[File:Dawson 2021 Open Library CORRECTION.png|400px|link=Dawson 2021 Open Library]]
:::: '''xx''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. '''Open Library'''. - [[Dawson 2021 Open Library |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gammon 2019 Cells CORRECTION.png|400px|link=Gammon 2019 Cells]]
:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::: '''xx''' Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET ''in vivo''. '''Cells''' 8:1487. - [[Gammon 2019 Cells |»Bioblast link«]]
:::: '''xx''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gao 2022 EBioMedicine CORRECTION.png|250px|link=Gao 2022 EBioMedicine]]
:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::: '''xx''' Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. '''EBioMedicine''' 83:104215. - [[Gao 2022 EBioMedicine |»Bioblast link«]]
:::: '''xx''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Garcia-Neto 2017 PLOS ONE CORRECTION.png|400px|link=Garcia-Neto 2017 PLOS ONE]]
:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::: '''xx''' Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in ''Debaryomyces Hansenii''. '''PLOS ONE''' 12:e0169621. - [[Garcia-Neto 2017 PLOS ONE |»Bioblast link«]]
:::: '''xx''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Garrido-Perez 2020 Int J Mol Sci CORRECTION.png|400px|link=Garrido-Perez 2020 Int J Mol Sci]]
:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::: '''xx''' Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. '''Int J Mol Sci''' 21:3374. - [[Garrido-Perez 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gatti 2020 Front Pharmacol CORRECTION.png|400px|link=Gatti 2020 Front Pharmacol]]
:::::: [[File:Du 2023 bioRxiv CORRECTION.png|400px|link=Du 2023 bioRxiv]]
:::: '''xx''' Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. '''Front Pharmacol''' 11:578599. - [[Gatti 2020 Front Pharmacol |»Bioblast link«]]
:::: '''xx''' Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. '''bioRxiv''' 2023.05.24.542198. - [[Du 2023 bioRxiv |»Bioblast link«]]
<br>
<br>


:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::::: [[File:Duan 2019 Aging (Albany NY) CORRECTION.png|400px|link=Duan 2019 Aging (Albany NY)]]
:::: '''xx''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
:::: '''xx''' Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. '''Aging (Albany NY)''' 11:7307-27. - [[Duan 2019 Aging (Albany NY) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::::: [[File:Dumollard 2007 Development CORRECTION.png|400px|link=Dumollard 2007 Development]]
:::: '''xx''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
:::: '''xx''' Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. '''Development''' 134:455-65. - [[Dumollard 2007 Development |»Bioblast link«]]
<br>
<br>


:::::: [[File:Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Giachin 2021 Angew Chem Int Ed Engl]]
:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::: '''xx''' Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. '''Angew Chem Int Ed Engl''' 60:4689-97. - [[Giachin 2021 Angew Chem Int Ed Engl |»Bioblast link«]]
:::: '''xx''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::::: [[File:Ekbal 2013 Chest CORRECTION.png|400px|link=Ekbal 2013 Chest]]
:::: '''xx''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
:::: '''xx''' Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. '''Chest''' 143:1799-1808. - [[Ekbal 2013 Chest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gopan 2021 World J Hepatol CORRECTION.png|400px|link=Gopan 2021 World J Hepatol]]
:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::: '''xx''' Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. '''World J Hepatol''' 13:1707-26. - [[Gopan 2021 World J Hepatol |»Bioblast link«]]
:::: '''xx''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Grasso 2020 Cell Stress CORRECTION.png|400px|link=Grasso 2020 Cell Stress]]
:::::: [[File:Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png|250px|link=Ezeani 2020 Front Biosci (Schol Ed)]]
:::: '''xx''' Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. '''Cell Stress''' 4:114-46. - [[Grasso 2020 Cell Stress |»Bioblast link«]]
:::: '''xx''' Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. '''Front Biosci (Schol Ed)''' 12:200-21. - [[Ezeani 2020 Front Biosci (Schol Ed) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Gujarati 2020 Am J Physiol Renal Physiol]]
:::::: [[File:Fahlbusch 2022 Int J Mol Sci CORRECTION.png|250px|link=Fahlbusch 2022 Int J Mol Sci]]
:::: '''xx''' Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. '''Am J Physiol Renal Physiol''' 319:F955-65. - [[Gujarati 2020 Am J Physiol Renal Physiol |»Bioblast link«]]
:::: '''xx''' Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. '''Int J Mol Sci''' 23:6873. - [[Fahlbusch 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hanna 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Hanna 2022 Front Cell Dev Biol]]
:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|250px|link=Faria 2023 Pharmaceutics]]
:::: '''xx''' Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. '''Front Cell Dev''' Biol 10:887764. - [[Hanna 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::::: [[File:Favia 2019 J Clin Med CORRECTION.png|250px|link=Favia 2019 J Clin Med]]
:::: '''xx''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
:::: '''xx''' Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. '''J Clin Med''' 8:1890. - [[Favia 2019 J Clin Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::::: [[File:Floenes 2022 Front Cell Dev Biol CORRECTION.png|250px|link=Floenes 2022 Front Cell Dev Biol]]
:::: '''xx''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
:::: '''xx''' Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? '''Front Cell Dev Biol''' 10:874596. - [[Floenes 2022 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::::: [[File:Fogg 2011 Chin J Cancer CORRECTION.png|250px|link=Fogg 2011 Chin J Cancer]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
:::: '''xx''' Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. '''Chin J Cancer''' 30:526-39. - [[Fogg 2011 Chin J Cancer |»Bioblast link«]]
<br>
<br>


:::::: [[File:Intlekofer 2019 Nat Metab CORRECTION.png|250px|link=Intlekofer 2019 Nat Metab]]
:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::: '''xx''' Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. '''Nat Metab''' 1:177-88. - [[Intlekofer 2019 Nat Metab |»Bioblast link«]]
:::: '''xx''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png|250px|link=Jaramillo-Jimenez 2023 Mitochondrion]]
:::::: [[File:Forbes 2018 Nat Rev Nephrol CORRECTION.png|250px|link=Forbes 2018 Nat Rev Nephrol]]
:::: '''xx''' Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. '''Mitochondrion''' 71:17-25. - [[Jaramillo-Jimenez 2023 Mitochondrion |»Bioblast link«]]
:::: '''xx''' Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. '''Nat Rev Nephrol''' 14:291-312. - [[Forbes 2018 Nat Rev Nephrol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Javali 2023 Biogerontology CORRECTION.png|200px|link=Javali 2023 Biogerontology]]
:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::: '''xx''' Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. '''Biogerontology''' 24:663-78. - [[Javali 2023 Biogerontology |»Bioblast link«]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jayasankar 2022 ACS Omega CORRECTION.png|400px|link=Jayasankar 2022 ACS Omega]]
:::::: [[File:Fromenty 2023 J Hepatol CORRECTION.png|250px|link=Fromenty 2023 J Hepatol]]
:::: '''xx''' Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. '''ACS Omega''' 7:1682-93. - [[Jayasankar 2022 ACS Omega |»Bioblast link«]]
:::: '''xx''' Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. '''J Hepatol''' 78:415-29. - [[Fromenty 2023 J Hepatol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::: '''xx''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
:::: '''xx''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jia 2018 Cells CORRECTION.png|400px|link=Jia 2018 Cells]]
:::::: [[File:Gammon 2019 Cells CORRECTION.png|400px|link=Gammon 2019 Cells]]
:::: '''xx''' Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. '''Cells''' 7:21. - [[Jia 2018 Cells |»Bioblast link«]]
:::: '''xx''' Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET ''in vivo''. '''Cells''' 8:1487. - [[Gammon 2019 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jochmanova 2016 Clin Cancer Res CORRECTION.png|400px|link=Jochmanova 2016 Clin Cancer Res]]
:::::: [[File:Gao 2022 EBioMedicine CORRECTION.png|250px|link=Gao 2022 EBioMedicine]]
:::: '''xx''' Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. '''Clin Cancer Res''' 22:5001-11. - [[Jochmanova 2016 Clin Cancer Res |»Bioblast link«]]
:::: '''xx''' Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. '''EBioMedicine''' 83:104215. - [[Gao 2022 EBioMedicine |»Bioblast link«]]
<br>
<br>


:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::::: [[File:Garcia-Neto 2017 PLOS ONE CORRECTION.png|400px|link=Garcia-Neto 2017 PLOS ONE]]
:::: '''xx''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
:::: '''xx''' Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in ''Debaryomyces Hansenii''. '''PLOS ONE''' 12:e0169621. - [[Garcia-Neto 2017 PLOS ONE |»Bioblast link«]]
<br>
<br>


:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::::: [[File:Garrido-Perez 2020 Int J Mol Sci CORRECTION.png|400px|link=Garrido-Perez 2020 Int J Mol Sci]]
:::: '''xx''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
:::: '''xx''' Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. '''Int J Mol Sci''' 21:3374. - [[Garrido-Perez 2020 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::::: [[File:Gatti 2020 Front Pharmacol CORRECTION.png|400px|link=Gatti 2020 Front Pharmacol]]
:::: '''xx''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
:::: '''xx''' Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. '''Front Pharmacol''' 11:578599. - [[Gatti 2020 Front Pharmacol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::: '''xx''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
:::: '''xx''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::: '''xx''' Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
:::: '''xx''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
<br>
<br>


:::::: [[File:Klimova 2008 Cell Death Differ CORRECTION.png|400px|link=Klimova 2008 Cell Death Differ]]
:::::: [[File:Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Giachin 2021 Angew Chem Int Ed Engl]]
:::: '''xx''' Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. '''Cell Death Differ''' 15:660-6. - [[Klimova 2008 Cell Death Differ |»Bioblast link«]]
:::: '''xx''' Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. '''Angew Chem Int Ed Engl''' 60:4689-97. - [[Giachin 2021 Angew Chem Int Ed Engl |»Bioblast link«]]
<br>
<br>


:::::: [[File:Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png|400px|link=Knottnerus 2018 Rev Endocr Metab Disord]]
:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::: '''xx''' Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. '''Rev Endocr Metab Disord''' 19:93-106. - [[Knottnerus 2018 Rev Endocr Metab Disord |»Bioblast link«]]
:::: '''xx''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::::: [[File:Gopan 2021 World J Hepatol CORRECTION.png|400px|link=Gopan 2021 World J Hepatol]]
:::: '''xx''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
:::: '''xx''' Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. '''World J Hepatol''' 13:1707-26. - [[Gopan 2021 World J Hepatol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::::: [[File:Grasso 2020 Cell Stress CORRECTION.png|400px|link=Grasso 2020 Cell Stress]]
:::: '''xx''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
:::: '''xx''' Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. '''Cell Stress''' 4:114-46. - [[Grasso 2020 Cell Stress |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::::: [[File:Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Gujarati 2020 Am J Physiol Renal Physiol]]
:::: '''xx''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''xx''' Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. '''Am J Physiol Renal Physiol''' 319:F955-65. - [[Gujarati 2020 Am J Physiol Renal Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Kuznetsov 2022 Antioxidants (Basel)]]
:::::: [[File:Hanna 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Hanna 2022 Front Cell Dev Biol]]
:::: '''xx''' Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. '''Antioxidants (Basel)''' 11:1995. - [[Kuznetsov 2022 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. '''Front Cell Dev''' Biol 10:887764. - [[Hanna 2022 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::: '''xx''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''xx''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lautrup 2019 Cell Metab CORRECTION.png|400px|link=Lautrup 2019 Cell Metab]]
:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::: '''xx''' Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD+ in brain aging and neurodegenerative disorders. '''Cell Metab''' 30:630-55. - [[Lautrup 2019 Cell Metab |»Bioblast link«]]
:::: '''xx''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::: '''xx''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lettieri-Barbato 2019 Mol Metab CORRECTION.png|400px|link=Lettieri-Barbato 2019 Mol Metab]]
:::::: [[File:Intlekofer 2019 Nat Metab CORRECTION.png|250px|link=Intlekofer 2019 Nat Metab]]
:::: '''xx''' Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. '''Mol Metab''' 25:11-9. - [[Lettieri-Barbato 2019 Mol Metab |»Bioblast link«]]
:::: '''xx''' Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. '''Nat Metab''' 1:177-88. - [[Intlekofer 2019 Nat Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::::: [[File:Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png|250px|link=Jaramillo-Jimenez 2023 Mitochondrion]]
:::: '''xx''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
:::: '''xx''' Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. '''Mitochondrion''' 71:17-25. - [[Jaramillo-Jimenez 2023 Mitochondrion |»Bioblast link«]]
<br>
<br>


:::::: [[File:Liskova 2021 Int J Mol Sci CORRECTION.png|400px|link=Liskova 2021 Int J Mol Sci]]
:::::: [[File:Javali 2023 Biogerontology CORRECTION.png|200px|link=Javali 2023 Biogerontology]]
:::: '''xx''' Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. '''Int J Mol Sci''' 22:2007. - [[Liskova 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. '''Biogerontology''' 24:663-78. - [[Javali 2023 Biogerontology |»Bioblast link«]]
<br>
<br>


:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::::: [[File:Jayasankar 2022 ACS Omega CORRECTION.png|400px|link=Jayasankar 2022 ACS Omega]]
:::: '''xx''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
:::: '''xx''' Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. '''ACS Omega''' 7:1682-93. - [[Jayasankar 2022 ACS Omega |»Bioblast link«]]
<br>
<br>


:::::: [[File:Liu 2023 Int J Biol Sci CORRECTION.png|400px|link=Liu 2023 Int J Biol Sci]]
:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::: '''xx''' Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. '''Int J Biol Sci''' 19:897-915. - [[Liu 2023 Int J Biol Sci |»Bioblast link«]]
:::: '''xx''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::::: [[File:Jia 2018 Cells CORRECTION.png|400px|link=Jia 2018 Cells]]
:::: '''xx''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
:::: '''xx''' Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. '''Cells''' 7:21. - [[Jia 2018 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lozano 2019 Oxid Med Cell Longev CORRECTION.png|400px|link=Lozano 2019 Oxid Med Cell Longev]]
:::::: [[File:Jochmanova 2016 Clin Cancer Res CORRECTION.png|400px|link=Jochmanova 2016 Clin Cancer Res]]
:::: '''xx''' Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. '''Oxid Med Cell Longev''' 2019:7683051. - [[Lozano 2019 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''xx''' Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. '''Clin Cancer Res''' 22:5001-11. - [[Jochmanova 2016 Clin Cancer Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::: '''xx''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
:::: '''xx''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::: '''xx''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
:::: '''xx''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
:::: '''xx''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
:::: '''xx''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::: '''xx''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
:::: '''xx''' Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png|400px|link=Maffezzini 2020 Cell Mol Life Sci]]
:::::: [[File:Klimova 2008 Cell Death Differ CORRECTION.png|400px|link=Klimova 2008 Cell Death Differ]]
:::: '''xx''' Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. '''Cell Mol Life Sci''' 77:2483-96. - [[Maffezzini 2020 Cell Mol Life Sci |»Bioblast link«]]
:::: '''xx''' Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. '''Cell Death Differ''' 15:660-6. - [[Klimova 2008 Cell Death Differ |»Bioblast link«]]
<br>
<br>


:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::::: [[File:Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png|400px|link=Knottnerus 2018 Rev Endocr Metab Disord]]
:::: '''xx''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
:::: '''xx''' Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. '''Rev Endocr Metab Disord''' 19:93-106. - [[Knottnerus 2018 Rev Endocr Metab Disord |»Bioblast link«]]
<br>
<br>


:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
:::: '''xx''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png|400px|link=Mathiyazakan 2023 Antimicrob Agents Chemother]]
:::::: [[File:Koopman 2016 Nat Protoc CORRECTION.png|400px|link=Koopman 2016 Nat Protoc]]
:::: '''xx''' Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome ''bcc:aa''3 supercomplex and a novel inhibitor targeting subunit cytochrome ''c''I. '''Antimicrob Agents Chemother''' 67:e0153122. - [[Mathiyazakan 2023 Antimicrob Agents Chemother |»Bioblast link«]]
:::: '''xx''' Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in ''Caenorhabditis elegans''. '''Nat Protoc''' 11:1798-816. - [[Koopman 2016 Nat Protoc |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mathur 2017 Front Cell Neurosci CORRECTION.png|400px|link=Mathur 2017 Front Cell Neurosci]]
:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::: '''xx''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
:::: '''xx''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
<br>
<br>


:::::: [[File:Merlin 2021 Nat Metab CORRECTION.png|300px|link=Merlin 2021 Nat Metab]]
:::::: [[File:Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Kuznetsov 2022 Antioxidants (Basel)]]
:::: '''xx''' Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. '''Nat Metab''' 3:1313-26. - [[Merlin 2021 Nat Metab |»Bioblast link«]]
:::: '''xx''' Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. '''Antioxidants (Basel)''' 11:1995. - [[Kuznetsov 2022 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|300px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::: '''xx''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
:::: '''xx''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
<br>
<br>


:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|300px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::::: [[File:Lautrup 2019 Cell Metab CORRECTION.png|400px|link=Lautrup 2019 Cell Metab]]
:::: '''xx''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:::: '''xx''' Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD+ in brain aging and neurodegenerative disorders. '''Cell Metab''' 30:630-55. - [[Lautrup 2019 Cell Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Moudgil 2005 J Appl Physiol (1985) CORRECTION.png|400px|link=Moudgil 2005 J Appl Physiol (1985)]]
:::::: [[File:Lettieri-Barbato 2019 Mol Metab CORRECTION.png|400px|link=Lettieri-Barbato 2019 Mol Metab]]
:::: '''xx''' Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. '''J Appl Physiol (1985)''' 98:390-403. - [[Moudgil 2005 J Appl Physiol (1985) |»Bioblast link«]]
:::: '''xx''' Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. '''Mol Metab''' 25:11-9. - [[Lettieri-Barbato 2019 Mol Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mracek 2013 Biochim Biophys Acta CORRECTION.png|400px|link=Mracek 2013 Biochim Biophys Acta]]
:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::: '''xx''' Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. '''Biochim Biophys Acta''' 1827:401-10. - [[Mracek 2013 Biochim Biophys Acta |»Bioblast link«]]
:::: '''xx''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Mueller 2023 Int J Mol Sci CORRECTION.png|400px|link=Mueller 2023 Int J Mol Sci]]
:::::: [[File:Liskova 2021 Int J Mol Sci CORRECTION.png|400px|link=Liskova 2021 Int J Mol Sci]]
:::: '''xx''' Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. '''Int J Mol Sci''' 24:11108. - [[Mueller 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. '''Int J Mol Sci''' 22:2007. - [[Liskova 2021 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Murray 2009 Genome Med CORRECTION.png|300px|link=Murray 2009 Genome Med]]
:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
:::: '''xx''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::::: [[File:Liu 2023 Int J Biol Sci CORRECTION.png|400px|link=Liu 2023 Int J Biol Sci]]
:::: '''xx''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. '''Int J Biol Sci''' 19:897-915. - [[Liu 2023 Int J Biol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Narine 2022 Front Cell Neurosci CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::: '''xx''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
:::: '''xx''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::::: [[File:Lozano 2019 Oxid Med Cell Longev CORRECTION.png|400px|link=Lozano 2019 Oxid Med Cell Longev]]
:::: '''xx''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
:::: '''xx''' Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. '''Oxid Med Cell Longev''' 2019:7683051. - [[Lozano 2019 Oxid Med Cell Longev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Pacifico 2023 Int J Mol Sci CORRECTION.png|400px|link=Pacifico 2023 Int J Mol Sci]]
:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::: '''xx''' Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - [[Pacifico 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Pendleton 2023 Front Cell Dev Biol CORRECTION.png|400px|link=Pendleton 2023 Front Cell Dev Biol]]
:::::: [[File:Luo 2015 J Diabetes Res CORRECTION.png|400px|link=Luo 2015 J Diabetes Res]]
:::: '''xx''' Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. '''Front Cell Dev Biol''' 11:1254313. - [[Pendleton 2023 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. '''J Diabetes Res''' 2015:512618. - [[Luo 2015 J Diabetes Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png|400px|link=Perouansky 2023 Exp Biol Med (Maywood)]]
:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::: '''xx''' Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. '''Exp Biol Med (Maywood)''' 248:545-52. - [[Perouansky 2023 Exp Biol Med (Maywood) |»Bioblast link«]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
<br>
<br>


:::::: [[File:Pharaoh 2023 Geroscience CORRECTION.png|400px|link=Pharaoh 2023 Geroscience]]
:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::: '''xx''' Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). '''Geroscience''' https://doi.org/10.1007/s11357-023-00861-y - [[Pharaoh 2023 Geroscience |»Bioblast link«]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::::: [[File:Madamanchi 2007 Circ Res CORRECTION.png|400px|link=Madamanchi 2007 Circ Res]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
:::: '''xx''' Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. '''Circ Res''' 100:460-73. - [[Madamanchi 2007 Circ Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|300px|link=Prasun 2020 J Diabetes Metab Disord]]
:::::: [[File:Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png|400px|link=Maffezzini 2020 Cell Mol Life Sci]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
:::: '''xx''' Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. '''Cell Mol Life Sci''' 77:2483-96. - [[Maffezzini 2020 Cell Mol Life Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Preston 2023 Academic Press CORRECTION.png|300px|link=Preston 2023 Academic Press]]
:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::: '''xx''' Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. '''Academic Press'''. - [[Preston 2023 Academic Press |»Bioblast link«]]
:::: '''xx''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
<br>
<br>


:::::: [[File:Protasoni 2021 Int J Mol Sci CORRECTION.png|250px|link=Protasoni 2021 Int J Mol Sci]]
:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::: '''xx''' Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. '''Int J Mol Sci''' 22:586. - [[Protasoni 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::::: [[File:Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png|400px|link=Mathiyazakan 2023 Antimicrob Agents Chemother]]
:::: '''xx''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
:::: '''xx''' Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome ''bcc:aa''3 supercomplex and a novel inhibitor targeting subunit cytochrome ''c''I. '''Antimicrob Agents Chemother''' 67:e0153122. - [[Mathiyazakan 2023 Antimicrob Agents Chemother |»Bioblast link«]]
<br>
<br>


:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::::: [[File:Mathur 2017 Front Cell Neurosci CORRECTION.png|400px|link=Mathur 2017 Front Cell Neurosci]]
:::: '''xx''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
:::: '''xx''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rahman 2022 Springer CORRECTION.png|400px|link=Rahman 2022 Springer]]
:::::: [[File:Merlin 2021 Nat Metab CORRECTION.png|300px|link=Merlin 2021 Nat Metab]]
:::: '''xx''' Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. '''Springer''', Berlin, Heidelberg. - [[Rahman 2022 Springer |»Bioblast link«]]
:::: '''xx''' Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. '''Nat Metab''' 3:1313-26. - [[Merlin 2021 Nat Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|300px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::: '''xx''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
:::: '''xx''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|300px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''xx''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:::: '''xx''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::::: [[File:Moudgil 2005 J Appl Physiol (1985) CORRECTION.png|400px|link=Moudgil 2005 J Appl Physiol (1985)]]
:::: '''xx''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
:::: '''xx''' Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. '''J Appl Physiol (1985)''' 98:390-403. - [[Moudgil 2005 J Appl Physiol (1985) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sacchetto 2019 J Clin Med CORRECTION.png|400px|link=Sacchetto 2019 J Clin Med]]
:::::: [[File:Mracek 2013 Biochim Biophys Acta CORRECTION.png|400px|link=Mracek 2013 Biochim Biophys Acta]]
:::: '''xx''' Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. '''J Clin Med''' 8:2195. - [[Sacchetto 2019 J Clin Med |»Bioblast link«]]
:::: '''xx''' Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. '''Biochim Biophys Acta''' 1827:401-10. - [[Mracek 2013 Biochim Biophys Acta |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sadri 2023 Arch Biochem Biophys CORRECTION.png|400px|link=Sadri 2023 Arch Biochem Biophys]]
:::::: [[File:Mueller 2023 Int J Mol Sci CORRECTION.png|400px|link=Mueller 2023 Int J Mol Sci]]
:::: '''xx''' Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH<sub>2</sub> linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. '''Arch Biochem Biophys''' 744:109690. - [[Sadri 2023 Arch Biochem Biophys |»Bioblast link«]]
:::: '''xx''' Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. '''Int J Mol Sci''' 24:11108. - [[Mueller 2023 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sadri 2023 Function (Oxf) CORRECTION.png|400px|link=Sadri 2023 Function (Oxf)]]
:::::: [[File:Murray 2009 Genome Med CORRECTION.png|300px|link=Murray 2009 Genome Med]]
:::: '''xx''' Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. '''Function (Oxf)''' 4:zqad038. - [[Sadri 2023 Function (Oxf) |»Bioblast link«]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sander 2022 Rev Med Virol CORRECTION.png|400px|link=Sander 2022 Rev Med Virol]]
:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::: '''xx''' Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. '''Rev Med Virol''' 32:e2240. - [[Sander 2022 Rev Med Virol |»Bioblast link«]]
:::: '''xx''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::::: [[File:Narine 2022 Front Cell Neurosci CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::: '''xx''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
:::: '''xx''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::: '''xx''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
:::: '''xx''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Schwartz 2022 JACC Basic Transl Sci CORRECTION.png|400px|link=Schwartz 2022 JACC Basic Transl Sci]]
:::::: [[File:Pacifico 2023 Int J Mol Sci CORRECTION.png|400px|link=Pacifico 2023 Int J Mol Sci]]
:::: '''xx''' Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. '''JACC Basic Transl Sci''' 7:1161-79. - [[Schwartz 2022 JACC Basic Transl Sci |»Bioblast link«]]
:::: '''xx''' Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - [[Pacifico 2023 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Schinagl 2016 PLoS One CORRECTION.png|400px|link=Schinagl 2016 PLoS One]]
:::::: [[File:Pendleton 2023 Front Cell Dev Biol CORRECTION.png|400px|link=Pendleton 2023 Front Cell Dev Biol]]
:::: '''xx''' Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. '''PLoS One''' 11:e0146878. - [[Schinagl 2016 PLoS One |»Bioblast link«]]
:::: '''xx''' Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. '''Front Cell Dev Biol''' 11:1254313. - [[Pendleton 2023 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sharma 2021 Int J Mol Sci CORRECTION.png|400px|link=Sharma 2021 Int J Mol Sci]]
:::::: [[File:Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png|400px|link=Perouansky 2023 Exp Biol Med (Maywood)]]
:::: '''xx''' Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. '''Int J Mol Sci''' 22:4850. - [[Sharma 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. '''Exp Biol Med (Maywood)''' 248:545-52. - [[Perouansky 2023 Exp Biol Med (Maywood) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Shen 2021 Cells CORRECTION.png|400px|link=Shen 2021 Cells]]
:::::: [[File:Pharaoh 2023 Geroscience CORRECTION.png|400px|link=Pharaoh 2023 Geroscience]]
:::: '''xx''' Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. '''Cells''' 10:1772. - [[Shen 2021 Cells |»Bioblast link«]]
:::: '''xx''' Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). '''Geroscience''' https://doi.org/10.1007/s11357-023-00861-y - [[Pharaoh 2023 Geroscience |»Bioblast link«]]
<br>
<br>


:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::: '''xx''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Shu 2023 Front Immunol CORRECTION.png|400px|link=Shu 2023 Front Immunol]]
:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|300px|link=Prasun 2020 J Diabetes Metab Disord]]
:::: '''xx''' Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. '''Front Immunol''' 14:1199233. - [[Shu 2023 Front Immunol |»Bioblast link«]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
<br>
<br>


:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::::: [[File:Preston 2023 Academic Press CORRECTION.png|300px|link=Preston 2023 Academic Press]]
:::: '''xx''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
:::: '''xx''' Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. '''Academic Press'''. - [[Preston 2023 Academic Press |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sivitz 2017 Neuromethods CORRECTION.png|400px|link=Sivitz 2017 Neuromethods]]
:::::: [[File:Protasoni 2021 Int J Mol Sci CORRECTION.png|250px|link=Protasoni 2021 Int J Mol Sci]]
:::: '''xx''' Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. '''Neuromethods''' 123:67-94. - [[Sivitz 2017 Neuromethods |»Bioblast link«]]
:::: '''xx''' Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. '''Int J Mol Sci''' 22:586. - [[Protasoni 2021 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Smith 2023 Nat Rev Mol Cell Biol]]
:::::: [[File:Protti 2006 Crit Care CORRECTION.png|400px|link=Protti 2006 Crit Care]]
:::: '''xx''' Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. '''Nat Rev Mol Cell Biol''' 24:607-32. - [[Smith 2023 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''xx''' Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. '''Crit Care''' 10:228. - [[Protti 2006 Crit Care |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sommer 2020 Sci Adv CORRECTION.png|400px|link=Sommer 2020 Sci Adv]]
:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::: '''xx''' Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. '''Sci Adv''' 6:eaba0694. - [[Sommer 2020 Sci Adv |»Bioblast link«]]
:::: '''xx''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
<br>
<br>


:::::: [[File:Speijer 2016 Biochem J CORRECTION.png|400px|link=Speijer 2016 Biochem J]]
:::::: [[File:Rahman 2022 Springer CORRECTION.png|400px|link=Rahman 2022 Springer]]
:::: '''xx''' Speijer D (2016) Being right on Q: shaping eukaryotic evolution. '''Biochem J''' 473:4103-27. - [[Speijer 2016 Biochem J |»Bioblast link«]]
:::: '''xx''' Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. '''Springer''', Berlin, Heidelberg. - [[Rahman 2022 Springer |»Bioblast link«]]
<br>
<br>


:::::: [[File:Spinelli 2018 Nat Cell Biol CORRECTION.png|400px|link=Spinelli 2018 Nat Cell Biol]]
:::::: [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|400px|link=Rai 2022 G3 (Bethesda)]]
:::: '''xx''' Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. '''Nat Cell Biol''' 20:745-54. - [[Spinelli 2018 Nat Cell Biol |»Bioblast link«]]
:::: '''xx''' Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. '''G3 (Bethesda)''' 12:jkac115. - [[Rai 2022 G3 (Bethesda) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::: '''xx''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''xx''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tanaka 2022 Cells CORRECTED.png|400px|link=Tanaka 2022 Cells]]
:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::: '''xx''' Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. '''Cells''' 11:2607. - [[Tanaka 2022 Cells |»Bioblast link«]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''xx''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tang 2014 Front Physiol CORRECTION.png|400px|link=Tang 2014 Front Physiol]]
:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::: '''xx''' Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. '''Front Physiol''' 5:175. - [[Tang 2014 Front Physiol |»Bioblast link«]]
:::: '''xx''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Thomas 2019 Cell Mol Life Sci CORRECTION.png|400px|link=Thomas 2019 Cell Mol Life Sci]]
:::::: [[File:Sacchetto 2019 J Clin Med CORRECTION.png|400px|link=Sacchetto 2019 J Clin Med]]
:::: '''xx''' Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. '''Cell Mol Life Sci''' 76:1759-77. - [[Thomas 2019 Cell Mol Life Sci |»Bioblast link«]]
:::: '''xx''' Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. '''J Clin Med''' 8:2195. - [[Sacchetto 2019 J Clin Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tian 2017 Front Genet CORRECTION.png|400px|link=Tian 2017 Front Genet]]
:::::: [[File:Sadri 2023 Arch Biochem Biophys CORRECTION.png|400px|link=Sadri 2023 Arch Biochem Biophys]]
:::: '''xx''' Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. '''Front Genet''' 8:205. - [[Tian 2017 Front Genet |»Bioblast link«]]
:::: '''xx''' Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH<sub>2</sub> linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. '''Arch Biochem Biophys''' 744:109690. - [[Sadri 2023 Arch Biochem Biophys |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::::: [[File:Sadri 2023 Function (Oxf) CORRECTION.png|400px|link=Sadri 2023 Function (Oxf)]]
:::: '''xx''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
:::: '''xx''' Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. '''Function (Oxf)''' 4:zqad038. - [[Sadri 2023 Function (Oxf) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::::: [[File:Sander 2022 Rev Med Virol CORRECTION.png|400px|link=Sander 2022 Rev Med Virol]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:::: '''xx''' Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. '''Rev Med Virol''' 32:e2240. - [[Sander 2022 Rev Med Virol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::::: [[File:Scandella 2023 Trends Endocrinol Metab CORRECTION.png|400px|link=Scandella 2023 Trends Endocrinol Metab]]
:::: '''xx''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:::: '''xx''' Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. '''Trends Endocrinol Metab''' 34:446-61. - [[Scandella 2023 Trends Endocrinol Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vayalil 2019 Oncol Lett CORRECTION.png|400px|link=Vayalil 2019 Oncol Lett]]
:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::: '''xx''' Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. '''Oncol Lett''' 18:4367-76. - [[Vayalil 2019 Oncol Lett |»Bioblast link«]]
:::: '''xx''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::::: [[File:Schwartz 2022 JACC Basic Transl Sci CORRECTION.png|400px|link=Schwartz 2022 JACC Basic Transl Sci]]
:::: '''xx''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
:::: '''xx''' Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. '''JACC Basic Transl Sci''' 7:1161-79. - [[Schwartz 2022 JACC Basic Transl Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vorotnikov 2022 Biomedicines CORRECTION.png|400px|link=Vorotnikov 2022 Biomedicines]]
:::::: [[File:Schinagl 2016 PLoS One CORRECTION.png|400px|link=Schinagl 2016 PLoS One]]
:::: '''xx''' Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? '''Biomedicines''' 10:3181. - [[Vorotnikov 2022 Biomedicines |»Bioblast link«]]
:::: '''xx''' Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. '''PLoS One''' 11:e0146878. - [[Schinagl 2016 PLoS One |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wang 2019 Trends Biochem Sci CORRECTION.png|400px|link=Wang 2019 Trends Biochem Sci]]
:::::: [[File:Sharma 2021 Int J Mol Sci CORRECTION.png|400px|link=Sharma 2021 Int J Mol Sci]]
:::: '''xx''' Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. '''Trends Biochem Sci''' 44:401-14. - [[Wang 2019 Trends Biochem Sci |»Bioblast link«]]
:::: '''xx''' Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. '''Int J Mol Sci''' 22:4850. - [[Sharma 2021 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wang 2023 Biomolecules CORRECTION.png|400px|link=Wang 2023 Biomolecules]]
:::::: [[File:Shen 2021 Cells CORRECTION.png|400px|link=Shen 2021 Cells]]
:::: '''xx''' Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? '''Biomolecules''' 13:353. - [[Wang 2023 Biomolecules |»Bioblast link«]]
:::: '''xx''' Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. '''Cells''' 10:1772. - [[Shen 2021 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wilson 2023 Trends Cell Biol CORRECTION.png|400px|link=Wilson 2023 Trends Cell Biol]]
:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::: '''xx''' Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. '''Trends Cell Biol''' 33:788-802. - [[Wilson 2023 Trends Cell Biol |»Bioblast link«]]
:::: '''xx''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wipf 2022 J Huntingtons Dis CORRECTION.png|400px|link=Wipf 2022 J Huntingtons Dis]]
:::::: [[File:Shu 2023 Front Immunol CORRECTION.png|400px|link=Shu 2023 Front Immunol]]
:::: '''xx''' Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. '''J Huntingtons Dis''' 11:3-15. - [[Wipf 2022 J Huntingtons Dis |»Bioblast link«]]
:::: '''xx''' Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. '''Front Immunol''' 14:1199233. - [[Shu 2023 Front Immunol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::: '''xx''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
:::: '''xx''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Xia 2022 Front Oncol CORRECTION.png|400px|link=Xia 2022 Front Oncol]]
:::::: [[File:Sivitz 2017 Neuromethods CORRECTION.png|400px|link=Sivitz 2017 Neuromethods]]
:::: '''xx''' Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. '''Front Oncol''' 12:953668. - [[Xia 2022 Front Oncol |»Bioblast link«]]
:::: '''xx''' Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. '''Neuromethods''' 123:67-94. - [[Sivitz 2017 Neuromethods |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yan 2014 J Diabetes Res CORRECTION.png|400px|link=Yan 2014 J Diabetes Res]]
:::::: [[File:Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Smith 2023 Nat Rev Mol Cell Biol]]
:::: '''xx''' Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. '''J Diabetes Res''' 2014:137919. - [[Yan 2014 J Diabetes Res |»Bioblast link«]]
:::: '''xx''' Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. '''Nat Rev Mol Cell Biol''' 24:607-32. - [[Smith 2023 Nat Rev Mol Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::::: [[File:Sommer 2020 Sci Adv CORRECTION.png|400px|link=Sommer 2020 Sci Adv]]
:::: '''xx''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. '''Sci Adv''' 6:eaba0694. - [[Sommer 2020 Sci Adv |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yu 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Yu 2023 Antioxidants (Basel)]]
:::::: [[File:Speijer 2016 Biochem J CORRECTION.png|400px|link=Speijer 2016 Biochem J]]
:::: '''xx''' Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. '''Antioxidants (Basel)''' 12:1163. - [[Yu 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Speijer D (2016) Being right on Q: shaping eukaryotic evolution. '''Biochem J''' 473:4103-27. - [[Speijer 2016 Biochem J |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::::: [[File:Spinelli 2018 Nat Cell Biol CORRECTION.png|400px|link=Spinelli 2018 Nat Cell Biol]]
:::: '''xx''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
:::: '''xx''' Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. '''Nat Cell Biol''' 20:745-54. - [[Spinelli 2018 Nat Cell Biol |»Bioblast link«]]
<br>
<br>
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
 
:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::: '''xx''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::::: [[File:Tanaka 2022 Cells CORRECTED.png|400px|link=Tanaka 2022 Cells]]
:::: '''xx''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
:::: '''xx''' Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. '''Cells''' 11:2607. - [[Tanaka 2022 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::::: [[File:Tang 2014 Front Physiol CORRECTION.png|400px|link=Tang 2014 Front Physiol]]
:::: '''xx''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
:::: '''xx''' Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. '''Front Physiol''' 5:175. - [[Tang 2014 Front Physiol |»Bioblast link«]]
<br>
<br>


:::: '''Add to Supplement 7'''
:::::: [[File:Thomas 2019 Cell Mol Life Sci CORRECTION.png|400px|link=Thomas 2019 Cell Mol Life Sci]]
:::: '''xx''' Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. '''Cell Mol Life Sci''' 76:1759-77. - [[Thomas 2019 Cell Mol Life Sci |»Bioblast link«]]
<br>


:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::::: [[File:Tian 2017 Front Genet CORRECTION.png|400px|link=Tian 2017 Front Genet]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
:::: '''xx''' Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. '''Front Genet''' 8:205. - [[Tian 2017 Front Genet |»Bioblast link«]]
<br>
<br>


::: '''Beyond preprint'''  
:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::: '''xx''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
<br>


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''1''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>
<br>


:::::: [[File:Lancaster 2002 Biochim Biophys Acta.png|300px|link=Lancaster 2002 Biochim Biophys Acta]] [[File:Lancaster 2001 FEBS Lett CORRECTION.png|300px|link=Lancaster 2001 FEBS Lett]]
:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::: '''2''' Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. '''Biochim Biophys Acta''' 1553:1-6. - [[Lancaster 2002 Biochim Biophys Acta |»Bioblast link«]]
:::: '''xx''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:::::: fumarate + 2H<sup>+</sup> shown besides NADH + H<sup>+</sup> is ambiguous.
:::: '''3''' Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. '''FEBS Lett''' 504:133-41. - [[Lancaster 2001 FEBS Lett |»Bioblast link«]]
<br>
<br>


== Supplement 2. FAD a substrate of SDH and FADH<sub>2</sub> a substrate of CII ==
:::::: [[File:Vayalil 2019 Oncol Lett CORRECTION.png|400px|link=Vayalil 2019 Oncol Lett]]
 
:::: '''xx''' Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. '''Oncol Lett''' 18:4367-76. - [[Vayalil 2019 Oncol Lett |»Bioblast link«]]
:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. The TCA cycle reduces FAD to FADH<sub>2</sub> - in several cases shown to be catalyzed by SDH. Then FADH<sub>2</sub> is erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 2001 to 2023.
<br>
<br>


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
:::: '''xx''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bansal 2019 Academic Press CORRECTED.png|400px|link=Bansal 2019 Academic Press]]
:::::: [[File:Vorotnikov 2022 Biomedicines CORRECTION.png|400px|link=Vorotnikov 2022 Biomedicines]]
:::: '''b''' Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Bansal 2019 Academic Press |»Bioblast link«]]
:::: '''xx''' Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? '''Biomedicines''' 10:3181. - [[Vorotnikov 2022 Biomedicines |»Bioblast link«]]
<br>
<br>


:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::::: [[File:Wang 2019 Trends Biochem Sci CORRECTION.png|400px|link=Wang 2019 Trends Biochem Sci]]
:::: '''c''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
:::: '''xx''' Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. '''Trends Biochem Sci''' 44:401-14. - [[Wang 2019 Trends Biochem Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Wang 2023 Biomolecules CORRECTION.png|400px|link=Wang 2023 Biomolecules]]
:::: '''g''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:::: '''xx''' Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? '''Biomolecules''' 13:353. - [[Wang 2023 Biomolecules |»Bioblast link«]]
<br>
<br>


:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]  
:::::: [[File:Wilson 2023 Trends Cell Biol CORRECTION.png|400px|link=Wilson 2023 Trends Cell Biol]]
:::: '''d,e''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]  
:::: '''xx''' Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. '''Trends Cell Biol''' 33:788-802. - [[Wilson 2023 Trends Cell Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::::: [[File:Wipf 2022 J Huntingtons Dis CORRECTION.png|400px|link=Wipf 2022 J Huntingtons Dis]]
:::: '''h''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |»Bioblast link«]]
:::: '''xx''' Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. '''J Huntingtons Dis''' 11:3-15. - [[Wipf 2022 J Huntingtons Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::: '''l''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
:::: '''xx''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::::: [[File:Xia 2022 Front Oncol CORRECTION.png|400px|link=Xia 2022 Front Oncol]]
:::: '''f''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
:::: '''xx''' Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. '''Front Oncol''' 12:953668. - [[Xia 2022 Front Oncol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::::: [[File:Yan 2014 J Diabetes Res CORRECTION.png|400px|link=Yan 2014 J Diabetes Res]]
:::: '''i''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
:::: '''xx''' Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. '''J Diabetes Res''' 2014:137919. - [[Yan 2014 J Diabetes Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::: '''j''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
:::: '''xx''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::::: [[File:Yu 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Yu 2023 Antioxidants (Basel)]]
:::: '''l''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''xx''' Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. '''Antioxidants (Basel)''' 12:1163. - [[Yu 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::: '''k''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |»Bioblast link«]]
:::: '''xx''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
<br>
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
<br>
<br>


:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::: '''m''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |»Bioblast link«]]
:::: '''xx''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::: '''n''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. '''Elsevier''' In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |»Bioblast link«]]
:::: '''xx''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
<br>
<br>


:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::: '''Add to Supplement 7'''
:::: '''o''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |»Bioblast link«]]
<br>


:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::::: [[File:Stillway LW CORRECTION.png|300px]]
:::: '''p''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
:::: '''xx''' Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: [https://doctorlib.info/medical/biochemistry/11.html Medical Biochemistry]
<br>
<br>


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
::: '''Beyond preprint'''
:::: '''q''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
 
:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::: '''1''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>
<br>


:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]  
:::::: [[File:Lancaster 2002 Biochim Biophys Acta.png|300px|link=Lancaster 2002 Biochim Biophys Acta]] [[File:Lancaster 2001 FEBS Lett CORRECTION.png|300px|link=Lancaster 2001 FEBS Lett]]
:::: '''r''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]  
:::: '''2''' Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. '''Biochim Biophys Acta''' 1553:1-6. - [[Lancaster 2002 Biochim Biophys Acta |»Bioblast link«]]
:::::: fumarate + 2H<sup>+</sup> shown besides NADH + H<sup>+</sup> is ambiguous.
:::: '''3''' Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. '''FEBS Lett''' 504:133-41. - [[Lancaster 2001 FEBS Lett |»Bioblast link«]]
<br>
<br>


:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
== Supplement 2. FAD a substrate of SDH and FADH<sub>2</sub> a substrate of CII ==
:::: '''s''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
 
:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. The TCA cycle reduces FAD to FADH<sub>2</sub> - in several cases shown to be catalyzed by SDH. Then FADH<sub>2</sub> is erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 2001 to 2023.
<br>
<br>


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::: '''t''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. '''J Biol Chem''' 299:102838. - [[Arnold 2023 J Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::::: [[File:Bansal 2019 Academic Press CORRECTED.png|400px|link=Bansal 2019 Academic Press]]
:::: '''u''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
:::: '''b''' Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Bansal 2019 Academic Press |»Bioblast link«]]
<br>
<br>


:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::::: [[File:Beier 2015 FASEB J CORRECTION.png|300px|link=Beier 2015 FASEB J]]
:::: '''w''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
:::: '''c''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
<br>
<br>


:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''v''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |»Bioblast link«]]
:::: '''g''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]]  
:::: '''x''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''d,e''' Chandel NS (2021) Mitochondria. '''Cold Spring Harb Perspect Biol''' 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |»Bioblast link«]]  
<br>
<br>


:::::: [[File:Cortez-Pinto 2009 J Hepatol CORRECTION.png|400px|link=Cortez-Pinto 2009 J Hepatol]]
:::: '''h''' Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. '''J Hepatol''' 50:857-60. - [[Cortez-Pinto 2009 J Hepatol |»Bioblast link«]]
<br>


== Supplement 3. FADH<sub>2</sub> a substrate of CII ==
:::::: [[File:De Beauchamp 2022 Leukemia CORRECTION.png|400px|link=De Beauchamp 2022 Leukemia]]
:::: '''l''' de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. '''Leukemia''' 36:1-12. - [[De Beauchamp 2022 Leukemia |»Bioblast link«]]
<br>


:::: '''Figure S3'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Alphabetical sequence of publications from 2001 to 2023.
:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::: '''f''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. '''Sci Adv''' 2:e1600200. - [[DeBerardinis 2016 Sci Adv |»Bioblast link«]]
<br>


:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::::: [[File:Fink 2018 J Biol Chem CORRECTION.png|400px|link=Fink 2018 J Biol Chem]]
:::: '''a''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
:::: '''i''' Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. '''J Biol Chem''' 293:19932-41. - [[Fink 2018 J Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::: '''b''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |»Bioblast link«]]
:::: '''j''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
<br>
<br>


:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''c''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
:::: '''l''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: '''d''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''k''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. '''Exp Biol Med (Maywood)''' 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::::: [[File:Ishii 2012 Front Oncol CORRECTION.png|400px|link=Ishii 2012 Front Oncol]]
:::: '''e''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
:::: '''m''' Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. '''Front Oncol''' 2:137. - [[Ishii 2012 Front Oncol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: '''f''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |»Bioblast link«]]
:::: '''n''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. '''Elsevier''' In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |»Bioblast link«]]
<br>
<br>


:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::::: [[File:Lewis 2019 CORRECTION.png|400px|link=Lewis 2019 Int J Mol Sci]]
:::: '''g''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |»Bioblast link«]]
:::: '''o''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. '''Int J Mol Sci''' 20:5271. - [[Lewis 2019 Int J Mol Sci |»Bioblast link«]]
:::::: Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
<br>
<br>


:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::: '''h''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
:::: '''p''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::: '''i''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:::: '''q''' Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. '''Nat Commun''' 11:102. - [[Martinez-Reyes 2020 Nat Commun |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|400px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::::: [[File:Missaglia 2021 CORRECTION.png|400px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]]  
:::: '''j''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
:::: '''r''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. '''Crit Rev Biochem Mol Biol''' 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |»Bioblast link«]]  
<br>
<br>


:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::::: [[File:Nolfi-Donegan 2020 Redox Biol CORRECTION.png|400px|link=Nolfi-Donegan 2020 Redox Biol]]
:::: '''k''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''s''' Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. '''Redox Biol''' 37:101674. - [[Nolfi-Donegan 2020 Redox Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: '''m''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |»Bioblast link«]]
:::: '''t''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. '''Biosci Rep''' 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::::: [[File:Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png|400px|link=Pelletier-Galarneau 2021 Curr Cardiol Rep]]
:::: '''n''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |»Bioblast link«]]
:::: '''u''' Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. '''Curr Cardiol Rep''' 23:70. - [[Pelletier-Galarneau 2021 Curr Cardiol Rep |»Bioblast link«]]
<br>
<br>


:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::::: [[File:Peng 2022 Front Oncol CORRECTION.png|400px|link=Peng 2022 Front Oncol]]
:::: '''o''' Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |»Bioblast link«]]
:::: '''w''' Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. '''Front Oncol''' 12:899502. - [[Peng 2022 Front Oncol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::: '''p''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |»Bioblast link«]]
:::: '''v''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. '''Mech Ageing Dev''' 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:Shinmura 2013 Oxid Med Cell Longev CORRECTION.png|400px|link=Shinmura 2013 Oxid Med Cell Longev]]
:::: '''q''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
:::: '''x''' Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. '''Oxid Med Cell Longev''' 2013:528935. - [[Shinmura 2013 Oxid Med Cell Longev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
 
:::: '''r''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |»Bioblast link«]]
== Supplement 3. FADH<sub>2</sub> a substrate of CII ==
 
:::: '''Figure S3'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Alphabetical sequence of publications from 2001 to 2023.
 
:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::: '''a''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::::: [[File:Bao 2021 Cells CORRECTION.png|400px|link=Bao 2021 Cells]]
:::: '''s''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''b''' Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. '''Cells''' 10:1715. - [[Bao 2021 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::::: [[File:Benard 2011 Springer CORRECTION.png|400px|link=Benard 2011 Springer]]
:::: '''t''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |»Bioblast link«]]
:::: '''c''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. '''Springer''' ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|700px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::: '''u''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |»Bioblast link«]]
:::: '''d''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::: '''v''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
:::: '''e''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::::: [[File:Billingham 2022 Nat Immunol CORRECTION.png|400px|link=Billingham 2022 Nat Immunol]]
:::: '''w''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |»Bioblast link«]]
:::: '''f''' Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. '''Nat Immunol''' 23:692-704. - [[Billingham 2022 Nat Immunol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: '''x''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
:::: '''g''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. '''Nature''' 14:813-20. - [[Brownlee 2001 Nature |»Bioblast link«]]
:::::: Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. '''Webvision''': The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |»Bioblast link«]]
<br>
<br>


:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::: '''y''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
:::: '''h''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''z''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
:::: '''i''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|400px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::: '''α''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
:::: '''j''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. '''Am J Physiol Cell Physiol''' 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::: '''β''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
:::: '''k''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. '''Oxid Med Cell Longev''' 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |»Bioblast link«]]
<br>
<br>


:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: '''γ''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
:::: '''m''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. '''Adv Exp Med Biol''' 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::::: [[File:Delport 2017 Metab Brain Dis CORRECTION.png|400px|link=Delport 2017 Metab Brain Dis]]
:::: '''δ''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
:::: '''n''' Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. '''Metab Brain Dis''' 32:1357-82. - [[Delport 2017 Metab Brain Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::::: [[File:Escoll 2019 Immunometabolism CORRECTION.png|400px|link=Escoll 2019 Immunometabolism]]
:::: '''ε''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |»Bioblast link«]]
:::: '''o''' Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. '''Immunometabolism''' 1:e190011. - [[Escoll 2019 Immunometabolism |»Bioblast link«]]
<br>
<br>


:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::::: [[File:Eyenga 2022 Cells CORRECTION.png|400px|link=Eyenga 2022 Cells]]
:::: '''ζ''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |»Bioblast link«]]
:::: '''p''' Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. '''Cells''' 11:1598. - [[Eyenga 2022 Cells |»Bioblast link«]]
<br>
<br>


:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::: '''η''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |»Bioblast link«]]
:::: '''q''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::::: [[File:Granger 2015 Redox Biol CORRECTION.png|400px|link=Granger 2015 Redox Biol]]
:::: '''θ''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |»Bioblast link«]]
:::: '''r''' Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. '''Redox Biol''' 6:524-551. - [[Granger 2015 Redox Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::: '''ι''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |»Bioblast link«]]
:::: '''s''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::::: [[File:Hanna 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Hanna 2023 Antioxid Redox Signal]]
:::: '''κ''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''t''' Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. '''Antioxid Redox Signal''' 38:57-67. - [[Hanna 2023 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::::: [[File:Jarmuszkiewicz 2023 Front Biosci CORRECTION.png|700px|link=Jarmuszkiewicz 2023 Front Biosci (Landmark Ed)]]
:::: '''λ''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
:::: '''u''' Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. '''Front Biosci (Landmark Ed)''' 28:61. - [[Jarmuszkiewicz 2023 Front Biosci (Landmark Ed) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::: '''μ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
:::: '''v''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::::: [[File:Kim 2010 Korean Diabetes J CORRECTION.png|400px|link=Kim 2010 Korean Diabetes J]]
:::: '''ν''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |»Bioblast link«]]
:::: '''w''' Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. '''Korean Diabetes J''' 34:146-53. - [[Kim 2010 Korean Diabetes J |»Bioblast link«]]
 
:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::: '''ξ''' Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::: '''ο''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
:::: '''x''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
<br>
<br>


:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::: '''π''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''y''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::: '''σ''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''z''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::: '''τ''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
:::: '''α''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::: '''υ''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
:::: '''β''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::: '''φ''' Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |»Bioblast link«]]
:::: '''γ''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|400px|link=Morelli 2019 Open Biol]]
:::: '''χ''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''δ''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. '''Open Biol''' 9:180221. - [[Morelli 2019 Open Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|400px|link=Nussbaum 2005 J Clin Invest]]
:::: '''ψ''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |»Bioblast link«]]
:::: '''ε''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. '''J Clin Invest''' 115:2689-91. - [[Nussbaum 2005 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: '''ζ''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. '''Springer''', Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |»Bioblast link«]]
<br>


== Supplement 4. FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products ==
:::::: [[File:Radogna 2021 Methods Mol Biol CORRECTION.png|400px|link=Radogna 2021 Methods Mol Biol]]
:::: '''η''' Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. '''Methods Mol Biol''' 2276:129-141. - [[Radogna 2021 Methods Mol Biol |»Bioblast link«]]
<br>


:::: '''Figure S4'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products. Alphabetical sequence of publications from 2001 to 2023.
:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::: '''θ''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. '''Br J Cancer''' 122:168-81. - [[Raimondi 2020 Br J Cancer |»Bioblast link«]]
<br>


:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:Read 2021 Redox Biol CORRECTION.png|400px|link=Read 2021 Redox Biol]]
:::: '''a''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
:::: '''ι''' Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. '''Redox Biol''' 47:102164. - [[Read 2021 Redox Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::: '''b''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''κ''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::::: [[File:Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png|400px|link=Rodick 2018 Nutrition and Dietary Supplements]]
:::: '''c''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
:::: '''λ''' Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. '''Nutrition and Dietary Supplements''' 10:1-11. - [[Rodick 2018 Nutrition and Dietary Supplements |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::: '''d''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''μ''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. '''Br J Pharmacol''' 133:781-8. - [[Sanchez 2001 Br J Pharmacol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|400px|link=Sarmah 2019 Transl Stroke Res]]
:::: '''e''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
:::: '''ν''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. '''Transl Stroke Res''' doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |»Bioblast link«]]
 
:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::: '''ξ''' Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::: '''f''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''ο''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::::: [[File:Szabo 2020 Int J Mol Sci CORRECTION.png|400px|link=Szabo 2020 Int J Mol Sci]]
:::: '''g''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
:::: '''π''' Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. '''Int J Mol Sci''' 21:6344. - [[Szabo 2020 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|400px|link=Turton 2022 Int J Mol Sci]]
:::: '''h''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
:::: '''σ''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. '''Int J Mol Sci''' 23:7487. - [[Turton 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::::: [[File:Vekshin 2020 Springer Cham CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::: '''i''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]  
:::: '''τ''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
<br>


:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::: '''υ''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
<br>


== Supplement 5. FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product ==
:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|400px|link=Yepez 2018 PLOS One]]
:::: '''φ''' Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. '''PLOS ONE''' 13:e0199938. - [[Yepez 2018 PLOS One |»Bioblast link«]]
<br>


:::: '''Figure S5'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product. Alphabetical sequence of publications from 2001 to 2023.
:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|400px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: '''χ''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. '''Oxid Med Cell Longev''' 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |»Bioblast link«]]
<br>


:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::: '''a''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |»Bioblast link«]]
:::: '''ψ''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. '''Mil Med Res''' 5:41. - [[Zhang 2018 Mil Med Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Carriere 2019 Academic Press CORRECTION.png|400px|link=Carriere 2019 Academic Press]]
:::: '''b''' Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Carriere 2019 Academic Press |»Bioblast link«]]
<br>


:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
== Supplement 4. FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products ==
:::: '''c, d''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |»Bioblast link«]]
 
:::: '''Figure S4'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD + 2H<sup>+</sup> as products. Alphabetical sequence of publications from 2001 to 2023.
 
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::: '''a''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
<br>
<br>


:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::: '''e''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
:::: '''b''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::: '''f''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |»Bioblast link«]]
:::: '''c''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
<br>
<br>


:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::: '''g''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::: '''d''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
<br>


:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::: '''h''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
:::: '''e''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
<br>
<br>


:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''i''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |»Bioblast link«]]
:::: '''f''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
<br>


== Supplement 6. FADH<sub>2</sub> or FADH as substrate of CII and FADH, FADH<sup>+</sup>, or FAD<sup>+</sup> as product ==
:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::: '''g''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
<br>


:::: '''Figure S6'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FADH or FADH<sup>+</sup> as product. Sequence of publications from 2001 to 2023 according to (''4'') to (''9'').
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
 
:::: '''h''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''a''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::: '''b''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''i''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. '''FASEB J''' 35:e21974. - [[Yin 2021 FASEB J |»Bioblast link«]]  
<br>
 
 
== Supplement 5. FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product ==
 
:::: '''Figure S5'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FAD<sup>+</sup> as product. Alphabetical sequence of publications from 2001 to 2023.


:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::::: [[File:Area-Gomez 2019 J Clin Invest CORRECTED.png|400px|link=Area-Gomez 2019 J Clin Invest]]
:::: '''c''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |»Bioblast link«]]
:::: '''a''' Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. '''J Clin Invest''' 129:34-45. - [[Area-Gomez 2019 J Clin Invest |»Bioblast link«]]
<br>
<br>


:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::::: [[File:Carriere 2019 Academic Press CORRECTION.png|400px|link=Carriere 2019 Academic Press]]
:::: '''ρ''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |»Bioblast link«]]
:::: '''b''' Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) '''Academic Press'''. - [[Carriere 2019 Academic Press |»Bioblast link«]]
<br>
<br>


:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|700px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::: '''d''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |»Bioblast link«]]
:::: '''c, d''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. '''Trends Endocrinol Metab''' 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2018 Cell Metab]]
:::::: [[File:Gero 2018 IntechOpen CORRECTION.png|400px|link=Gero 2018 IntechOpen]]
:::: '''e''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2018 Cell Metab |»Bioblast link«]]
:::: '''e''' Gero D (2023) Hyperglycemia-induced endothelial dysfunction. '''IntechOpen''' Chapter 8. - [[Gero 2018 IntechOpen |»Bioblast link«]]
<br>
<br>


:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
:::::: [[File:Onukwufor 2022 Antioxidants (Basel) CORRECTION.png|400px|link=Onukwufor 2022 Antioxidants (Basel)]]
:::: '''f''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
:::: '''f''' Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. '''Antioxidants (Basel)''' 11:692. - [[Onukwufor 2022 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


 
:::::: [[File:Shirakawa 2023 Sci Rep CORRECTION.png|400px|link=Shirakawa 2023 Sci Rep]]
:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|400px|link=Middleton 2021 Therap Adv Gastroenterol]]
:::: '''g''' Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. '''Sci Rep''' 13:5203. - [[Shirakawa 2023 Sci Rep |»Bioblast link«]]
:::: '''g''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
<br>


:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::: '''h''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
:::: '''h''' Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
<br>
<br>


:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::::: [[File:Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png|400px|link=Valle-Mendiola 2020 Cancers (Basel)]]
:::: '''i''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:::: '''i''' Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. '''Cancers (Basel)''' 12:124. - [[Valle-Mendiola 2020 Cancers (Basel) |»Bioblast link«]]
<br>
<br>


== Supplement 6. FADH<sub>2</sub> or FADH as substrate of CII and FADH, FADH<sup>+</sup>, or FAD<sup>+</sup> as product ==


== Supplement 7. FADH<sub>2</sub> or FADH as substrate of CII in websites ==
:::: '''Figure S6'''. Complex II ambiguities: FADH<sub>2</sub> as substrate of CII and FADH or FADH<sup>+</sup> as product. Sequence of publications from 2001 to 2023 according to (''4'') to (''9'').


:::: '''Figure S7'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''a''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
<br>


:::::: [[File:OpenStax Biology.png|400px]]
:::::: [[File:Kezic 2016 Oxid Med Cell Longev CORRECTION.png|400px|link=Kezic 2016 Oxid Med Cell Longev]]
::: ('''a''')
:::: '''b''' Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. '''Oxid Med Cell Longev''' 2016:2950503. - [[Kezic 2016 Oxid Med Cell Longev |»Bioblast link«]]
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
<br>
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
 
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::::: [[File:Li 2013 J Hematol Oncol CORRECTION.png|400px|link=Li 2013 J Hematol Oncol]]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''c''' Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. '''J Hematol Oncol''' 6:19. - [[Li 2013 J Hematol Oncol |»Bioblast link«]]
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
<br>
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
:::: '''Website 7''' ('''a'''): [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
:::: '''Website 8''' ('''a'''): [https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain Brooder]


:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|400px]]
:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
::: ('''a’''')
:::: '''ρ''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. - [[Tabassum 2020 J Biomed Res Environ Sci |»Bioblast link«]]
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
<br>
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Expii OpenStax CORRECTION.png|400px]]
:::::: [[File:Yang 2020 Transl Neurodegener CORRECTION.png|400px|link=Yang 2020 Transl Neurodegener]]
::: ('''b''')
:::: '''d''' Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. '''Transl Neurodegener''' 9:19. - [[Yang 2020 Transl Neurodegener |»Bioblast link«]]
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
<br>
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
 
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2018 Cell Metab]]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.13
:::: '''e''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2018 Cell Metab |»Bioblast link«]]
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
<br>
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax


:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
:::::: [[File:Johnson 2013 Eukaryot Cell CORRECTION.png|400px|link=Johnson 2013 Eukaryot Cell]]
::: ('''c''')
:::: '''f''' Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. '''Eukaryot Cell''' 12:776-93. - [[Johnson 2013 Eukaryot Cell |»Bioblast link«]]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
<br>
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 13''' ('''c'''): [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
:::: '''Website 14''' ('''c'''): [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::: '''Website 15''' ('''c'''): [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]  
:::: '''Website 16''' ('''c'''): [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 17''' ('''c'''): [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]


:::::: [[File:Labxchange CORRECTION.png|400px]]
::: ('''d''')
:::: '''Website 18''' ('''d'''): [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier


:::::: [[File:Jack Westin CORRECTION.png|400px]]
:::::: [[File:Middleton 2021 Therap Adv CORRECTION.png|400px|link=Middleton 2021 Therap Adv Gastroenterol]]
::: ('''e''')
:::: '''g''' Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. '''Therap Adv Gastroenterol''' 14:17562848211031394. - [[Middleton 2021 Therap Adv Gastroenterol |»Bioblast link«]]
:::: '''Website 19''' ('''e'''): [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]
<br>
 
:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::: '''h''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
<br>


:::::: [[File:Videodelivery CORRECTION.png|400px]]
:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
::: ('''f''')
:::: '''i''' Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:::: '''Website 20''' ('''f'''): [https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg videodelivery]
<br>


:::::: [[File:SparkNotes CORRECTION.png|400px]]
::: ('''g''')
:::: '''Website 21''' ('''g'''): [https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/ - SparkNotes]


:::::: [[File:Researchtweet CORRECTION.png|400px]]
=== Supplement 7. FADH<sub>2</sub> or FADH as substrate of CII in websites ===
::: ('''h''')
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 23''' ('''h'''): [https://microbenotes.com/electron-transport-chain/ Microbe Notes]


:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
:::: '''Figure S7'''. Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H ('''g'''), FADH<sub>2</sub> → FAD+2H<sup>+</sup> ('''a’''', '''c''', '''h-n'''), and FADH<sub>2</sub> → FAD ('''a''', '''b''', '''d-f''', '''o-θ''') should be corrected to FADH<sub>2</sub> → FAD (Eq. 3b). NADH → NAD<sup>+</sup> is frequently written in graphs without showing the H<sup>+</sup> on the left side of the arrow, except for ('''p-r'''). NADH → NAD<sup>+</sup>+H<sup>+</sup> ('''a-g''', '''m'''), NADH → NAD<sup>+</sup>+2H<sup>+</sup> ('''h-l'''), NADH+H<sup>+</sup> → NAD<sup>+</sup>+2H<sup>+</sup> ('''j''', '''k'''), and NADH → NAD ('''ι''') should be corrected to NADH+H<sup>+</sup> → NAD<sup>+</sup> (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
::: ('''i''')
:::: '''Website 24''' ('''i'''): [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2


:::::: [[File:Labster Theory CORRECTION.png|400px]]
:::::: [[File:OpenStax Biology.png|400px]]
::: ('''j''')
::: ('''a''')
:::: '''Website 25''' ('''j'''): [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.11
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 1
:::: '''Website 7''' ('''a'''): [https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain LibreTexts Biology] Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
:::: '''Website 8''' ('''a'''): [https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain Brooder]


:::::: [[File:Nau.edu CORRECTION.png|400px]]
:::::: [[File:Khan Academy modified from OpenStax CORRECTION.png|400px]]
::: ('''k''')
::: ('''a’''')
:::: '''Website 26''' ('''k'''): [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH<sub>2</sub>-error: "''FADH<sub>2</sub> .. feeds them ''(electrons)'' into the transport chain through complex II.''"
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:ScienceFacts CORRECTION.png|400px]]
:::::: [[File:Expii OpenStax CORRECTION.png|400px]]
::: ('''l''')
::: ('''b''')
:::: '''Website 27''' ('''l'''): [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]
:::: '''Website 1''' ('''a''','''b'''): [https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation OpenStax Biology] - Fig. 7.12
 
:::: '''Website 2''' ('''a''','''b'''): [https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-phosphorylation/ Concepts of Biology] - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
:::::: [[File:Ck12 CORRECTION.png|400px]]
:::: '''Website 3''' ('''a''','''b'''): [https://www.pharmaguideline.com/2022/01/electron-transport-chain.html Pharmaguideline]
::: ('''m''')
:::: '''Website 4''' ('''a''','''b'''): [https://www.texasgateway.org/resource/74-oxidative-phosphorylation Texas Gateway] - Figure 7.13
:::: '''Website 28''' ('''m'''): [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]
:::: '''Website 5''' ('''a''','''b'''): [https://opened.cuny.edu/courseware/lesson/639/overview - CUNY]
:::: '''Website 6''' ('''a''','''b'''): [https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/ lumen Biology for Majors I] - Fig. 3
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy] - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax


:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
:::::: [[File:Biologydictionary.net CORRECTION.png|400px]]
::: ('''n''')
::: ('''c''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 29''' ('''n'''): [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 13''' ('''c'''): [https://commons.wikimedia.org/w/index.php?curid=30148497 wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19]
:::: '''Website 14''' ('''c'''): [https://biologydictionary.net/electron-transport-chain-and-oxidative-phosphorylation/ biologydictionary.net 2018-08-21]
:::: '''Website 15''' ('''c'''): [https://www.quora.com/Why-does-FADH2-form-2-ATP Quora]
:::: '''Website 16''' ('''c'''): [https://teachmephysiology.com/biochemistry/atp-production/electron-transport-chain/ TeachMePhysiology] - Fig. 1. 2023-03-13
:::: '''Website 17''' ('''c'''): [https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-transport-system-and-what-are-its-functions/ toppr]


:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
:::::: [[File:Labxchange CORRECTION.png|400px]]
::: ('''o''')
::: ('''d''')
:::: '''Website 30''' ('''o'''): [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]
:::: '''Website 18''' ('''d'''): [https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-b4a6-66e74198fbcf:html:1 Labxchange] - Figure 8.15 credit: modification of work by Klaus Hoffmeier


:::::: [[File:Vector Mine CORRECTION.png|400px]]
:::::: [[File:Jack Westin CORRECTION.png|400px]]
::: ('''p''')
::: ('''e''')
:::: '''Website 31''' ('''p'''): [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
:::: '''Website 19''' ('''e'''): [https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria Jack Westin MCAT Courses]
:::: '''Website 32''' ('''p'''): [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]


:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
:::::: [[File:Videodelivery CORRECTION.png|400px]]
::: ('''q''')
::: ('''f''')
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18
:::: '''Website 20''' ('''f'''): [https://videodelivery.net/79e91c40bf96f9692560fa378c5086b6/thumbnails/thumbnail.jpg videodelivery]


:::::: [[File:DBriers CORRECTION.png|400px]]
:::::: [[File:SparkNotes CORRECTION.png|400px]]
::: ('''r''')
::: ('''g''')
:::: '''Website 34''' ('''r'''): [http://www.dbriers.com/tutorials/ DBriers]
:::: '''Website 21''' ('''g'''): [https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section2/ - SparkNotes]


:::::: [[File:SNC1D CORRECTION.png|400px]]
:::::: [[File:Researchtweet CORRECTION.png|400px]]
::: ('''s''')
::: ('''h''')
:::: '''Website 35''' ('''s'''): [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 23''' ('''h'''): [https://microbenotes.com/electron-transport-chain/ Microbe Notes]


:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
:::::: [[File:FlexBooks 2 0 CORRECTION.png|400px]]
::: ('''t''')
::: ('''i''')
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 24''' ('''i'''): [https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.28/primary/lesson/electron-transport-bio/ FlexBooks] - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 36''' ('''t'''): [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]


:::::: [[File:Hyperphysics CORRECTION.png|400px]]
:::::: [[File:Labster Theory CORRECTION.png|400px]]
::: ('''u''')
::: ('''j''')
:::: '''Website 37''' ('''u'''): [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]
:::: '''Website 25''' ('''j'''): [https://theory.labster.com/Electron_Transport_Chain/ Labster Theory]


:::::: [[File:Khan Academy CORRECTION.png|400px]]
:::::: [[File:Nau.edu CORRECTION.png|400px]]
::: ('''v''')
::: ('''k''')
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
:::: '''Website 26''' ('''k'''): [https://www2.nau.edu/~fpm/bio205/u4fg36.html nau.edu]
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
:::::: [[File:ScienceFacts CORRECTION.png|400px]]
::: ('''w''')
::: ('''l''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002
:::: '''Website 27''' ('''l'''): [https://www.sciencefacts.net/electron-transport-chain.html ScienceFacts]


:::::: [[File:UrbanPro CORRECTION.png|400px]]
:::::: [[File:Ck12 CORRECTION.png|400px]]
::: ('''x''')
::: ('''m''')
:::: '''Website 38''' ('''x'''): [https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation UrbanPro]
:::: '''Website 28''' ('''m'''): [https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-Chain-Advanced-BIO-ADV/ cK-12]


:::::: [[File:Quizlet CORRECTION.png|400px]]
:::::: [[File:Wikimedia ETC CORRECTION.png|400px]]
::: ('''y''')
::: ('''n''')
:::: '''Website 39''' ('''y'''): [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Image source: By CNX OpenStax
:::: '''Website 29''' ('''n'''): [https://commons.wikimedia.org/wiki/File:Mitochondrial_electron_transport_chain.png Wikimedia]


:::::: [[File:Unm.edu CORRECTION.png|400px]]
:::::: [[File:Creative-biolabs CORRECTION.png|400px]]
::: ('''z''')
::: ('''o''')
:::: '''Website 40''' ('''z'''): [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]
:::: '''Website 30''' ('''o'''): [https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-chain.htm creative-biolabs]


:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
:::::: [[File:Vector Mine CORRECTION.png|400px]]
::: ('''α''')
::: ('''p''')
:::: '''Website 41''' ('''α'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19
:::: '''Website 31''' ('''p'''): [https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-image235345232 dreamstime]
:::: '''Website 32''' ('''p'''): [https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-transporters-outline-diagram/ VectorMine]


:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
:::::: [[File:YouTube Dirty Medicine Biochemistry CORRECTION.png|400px]]
::: ('''β''')
::: ('''q''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii] - Image source: By Gabi Slizewska
:::: '''Website 33''': [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FLsRQ5_EmxJA%2Fmaxresdefault.jpg&tbnid=6w-0DVPMw7vOdM&vet=12ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ YouTube Dirty Medicine Biochemistry] - Uploaded 2019-07-18


:::::: [[File:BiochemDen CORRECTION.png|400px]]
:::::: [[File:DBriers CORRECTION.png|400px]]
::: ('''γ''')
::: ('''r''')
:::: '''Website 42''' ('''γ'''): [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]
:::: '''Website 34''' ('''r'''): [http://www.dbriers.com/tutorials/ DBriers]


:::::: [[File:Hopes CORRECTION.png|400px]]
:::::: [[File:SNC1D CORRECTION.png|400px]]
:::('''δ''')
::: ('''s''')
:::: '''Website 43''' ('''δ'''): [https://hopes.stanford.edu/riboflavin/ hopes, Huntington’s outreach project for education, at Stanford]
:::: '''Website 35''' ('''s'''): [https://sbi4uraft2014.weebly.com/electron-transport-chain.html SNC1D - BIOLOGY LESSON PLAN BLOG]


:::::: [[File:Studocu CORRECTION.png|400px]]
:::::: [[File:ThoughtCo-Getty Images CORRECTION.png|400px]]
::: ('''ε''')
::: ('''t''')
:::: '''Website 44''' ('''ε'''): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
:::: '''Website 12''' ('''c''','''t'''): [https://www.thoughtco.com/electron-transport-chain-and-energy-production-4136143 ThoughtCo] - extender01 / iStock / Getty Images Plus
:::: '''Website 22''' ('''h''','''t'''): [https://researchtweet.com/mitochondrial-electron-transport-chain-2/ researchtweet]
:::: '''Website 36''' ('''t'''): [https://www.dreamstime.com/royalty-free-stock-photography-electron-transport-chain-illustration-oxidative-phosphorylation-image36048617 dreamstime]


:::::: [[File:ScienceDirect CORRECTION.png|400px]]
:::::: [[File:Hyperphysics CORRECTION.png|400px]]
::: ('''ζ''')
::: ('''u''')
:::: '''Website 45''' ('''ζ'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]
:::: '''Website 37''' ('''u'''): [http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/Complex1.html hyperphysics]


:::::: [[File:BBC BITESIZE CORRECTION.png|400px]]
:::::: [[File:Khan Academy CORRECTION.png|400px]]
::: ('''η''')
::: ('''v''')
:::: '''Website 46''' ('''η'''): [https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 BBC BITESIZE cK-12]
:::: '''Website 9''' ('''a’''','''b''','''v'''): [https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-respiration-ap/a/oxidative-phosphorylation-etc Khan Academy]
:::: '''Website 10''' ('''a’''','''b''','''v'''): [https://learn.saylor.org/mod/page/view.php?id=32815 Saylor Academy]


:::::: [[File:Freepik CORRECTION.png|400px]]
:::::: [[File:Expii-Whitney, Rolfes 2002 CORRECTION.png|400px]]
::: ('''θ''')
::: ('''w''')
:::: '''Website 47''' ('''θ'''): [https://www.freepik.com/premium-vector/oxidative-phosphorylation-process-electron-transport-chain-final-step-cellular-respiration_29211885.htm freepik]
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii] - Whitney, Rolfes 2002


:::::: [[File:LibreTexts Chemistry_CORRECTION.png|400px]]
:::::: [[File:UrbanPro CORRECTION.png|400px]]
::: ('''ι''')
::: ('''x''')
:::: '''Website 48''' ('''ι'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3
:::: '''Website 38''' ('''x'''): [https://www.urbanpro.com/ba-tuition/oxidative-phosphorylation UrbanPro]
 
:::::: [[File:Quizlet CORRECTION.png|400px]]
::: ('''y''')
:::: '''Website 39''' ('''y'''): [https://quizlet.com/245664214/electron-transport-chain-facts-of-cell-respiration-diagram/ Quizlet]
 
:::::: [[File:Unm.edu CORRECTION.png|400px]]
::: ('''z''')
:::: '''Website 40''' ('''z'''): [https://www.unm.edu/~lkravitz/Exercise%20Phys/ETCstory.html unm.edu]
 
:::::: [[File:YouTube sciencemusicvideos CORRECTION.png|400px]]
::: ('''α''')
:::: '''Website 41''' ('''α'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2FVER6xW_r1vc%2Fmaxresdefault.jpg&tbnid=Brshl0oN9LyYnM&vet=12ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ YouTube sciencemusicvideos] - Uploaded 2014-08-19
 
:::::: [[File:Expii-Gabi Slizewska CORRECTION.png|400px]]
::: ('''β''')
:::: '''Website 11''' ('''b''','''c''','''n''','''w''','''β'''): [https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 expii expii] - Image source: By Gabi Slizewska
 
:::::: [[File:BiochemDen CORRECTION.png|400px]]
::: ('''γ''')
:::: '''Website 42''' ('''γ'''): [https://biochemden.com/electron-transport-chain-mechanism/ BiochemDen.com]
 
:::::: [[File:Hopes CORRECTION.png|400px]]
:::('''δ''')
:::: '''Website 43''' ('''δ'''): [https://hopes.stanford.edu/riboflavin/ hopes, Huntington’s outreach project for education, at Stanford]
 
:::::: [[File:Studocu CORRECTION.png|400px]]
::: ('''ε''')
:::: '''Website 44''' ('''ε'''): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
 
:::::: [[File:ScienceDirect CORRECTION.png|400px]]
::: ('''ζ''')
:::: '''Website 45''' ('''ζ'''): [https://www.google.com/imgres?imgurl=https%3A%2F%2Fars.els-cdn.com%2Fcontent%2Fimage%2F3-s2.0-B9780128008836000215-f21-07-9780128008836.jpg&imgrefurl=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Felectron-transport-chain&tbnid=g3dD4u8Tvd6TWM&vet=12ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ..i&docid=Moj_2_W0OpUDcM&w=632&h=439&q=FADH2%20is%20the%20substrates%20of%20Complex%20II&client=firefox-b-d&ved=2ahUKEwjc9deUprT9AhVxhv0HHXZbAd0QMygCegUIARDBAQ ScienceDirect]
 
:::::: [[File:BBC BITESIZE CORRECTION.png|400px]]
::: ('''η''')
:::: '''Website 46''' ('''η'''): [https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 BBC BITESIZE cK-12]
 
:::::: [[File:Freepik CORRECTION.png|400px]]
::: ('''θ''')
:::: '''Website 47''' ('''θ'''): [https://www.freepik.com/premium-vector/oxidative-phosphorylation-process-electron-transport-chain-final-step-cellular-respiration_29211885.htm freepik]
 
:::::: [[File:LibreTexts Chemistry_CORRECTION.png|400px]]
::: ('''ι''')
:::: '''Website 48''' ('''ι'''): [https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(Under_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry] - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3




== Supplement 8. Weblinks on FAO and CII ==
== Supplement 8. Weblinks on FAO and CII ==
::: <big>'''From CGpDH and other pathways to FADH<sub>2</sub> to CII?'''</big>
[[File:Blanco 2017 Academic Press CORRECTION.png|300px|link=Blanco 2017 Academic Press]] <big><big>///</big></big> [[File:Willson 2022 Blood CORRECTION.png|300px|link=Willson 2022 Blood]]  <big><big>///</big></big>  [[File:Rai 2022 G3 (Bethesda) CORRECTION.png|300px|link=Rai 2022 G3 (Bethesda)]] <big><big>///</big></big> [[File:Koopman 2016 Nat Protoc CORRECTION.png|300px|link=Koopman 2016 Nat Protoc]]
:::: ''Comment'' ([[Cardoso Luiza]], [[Gnaiger Erich]], 2023-08-06):
'''Fig. 9.19 from [[Blanco 2017 Academic Press| Blanco, Blanco (2017)]]''', '''Fig. 1 from [[Willson 2022 Blood| Willson et al (2022)]]''', and '''Fig. 1 from [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]''' show FADH<sub>2</sub> <span style="color:red">(1)</span> to be formed in the mitochondrial matrix from <span style="color:red">GPDH</span>, GPD2, or <span style="color:red">GPO1</span> (all indicating [[CGpDH]]) and from the TCA cycle ('''Fig. 1 [[Rai 2022 G3 (Bethesda)| Rai et al (2022)]]'''), then <span style="color:red">(2)</span> feeding electrons further '<span style="color:red">To respiratory chain</span>', the 'ETC', or 'Electron Transport Chain' ([[ETS]]). Combined with FADH<sub>2</sub> shown <span style="color:red">(1)</span> to be formed in the mt-matrix from the TCA cycle and <span style="color:red">(2)</span> feeding into CII ('''Fig. 1 from [[Koopman 2016 Nat Protoc| Koopman et al (2016)]]'''; among >120 examples discussed as CII-[[Ambiguity crisis |ambiguities]]), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.
:::::: [[File:Cogliati 2021 Biochem Soc Trans CORRECTION.png|400px|link=Cogliati 2021 Biochem Soc Trans]]
:::: '''xx''' Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - [[Cogliati 2021 Biochem Soc Trans |»Bioblast link«]]
<br>
:::::: [[File:LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=LaMoia 2022 Proc Natl Acad Sci U S A]]
:::: '''xx''' LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. '''Proc Natl Acad Sci U S A''' 119:e2122287119. - [[LaMoia 2022 Proc Natl Acad Sci U S A |»Bioblast link«]]
<br>
:::::: [[File:Mosegaard 2020 Int J Mol Sci CORRECTION.png|400px|link=Mosegaard 2020 Int J Mol Sci]]
:::: '''xx''' Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. '''Int J Mol Sci''' 21:3847. - [[Mosegaard 2020 Int J Mol Sci |»Bioblast link«]]
<br>
<big>'''Addition to Figure 5: FAO and CII ambiguitiy'''</big>
:::::: [[File:Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png|400px|link=Balasubramaniam 2020 J Transl Genet Genom]]
:::: '''xx''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. '''J Transl Genet Genom''' 4:285-306. - [[Balasubramaniam 2020 J Transl Genet Genom |»Bioblast link«]]
<br>
:::::: [[File:Bertero 2018 Nat Rev Cardiol CORRECTION.png|400px|link=Bertero 2018 Nat Rev Cardiol]]
:::: '''xx''' Bertero E, Maack C (2018) Metabolic remodelling in heart failure. '''Nat Rev Cardiol''' 15:457-70. - [[Bertero 2018 Nat Rev Cardiol |»Bioblast link«]]
<br>
:::::: [[File:Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png|400px|link=Bugarski 2018 Am J Physiol Renal Physiol]]
:::: '''xx''' Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. '''Am J Physiol Renal Physiol''' 315:F1613-25. - [[Bugarski 2018 Am J Physiol Renal Physiol |»Bioblast link«]]
<br>
:::::: [[File:Cortassa 2019 Front Physiol CORRECTION.png|250px|link=Cortassa 2019 Front Physiol]]
:::: '''xx''' Cortassa S, Aon MA, Sollott SJ (2019) Control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks. A systems biology analysis. '''Front Physiol''' 10:201. - [[Cortassa 2019 Front Physiol |»Bioblast link«]]
<br>
:::::: [[File:DiMauro 2003 N Engl J Med CORRECTION.png|400px|link=DiMauro 2003 N Engl J Med]]
:::: '''xx''' DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. '''N Engl J Med''' 348:2656-68. - [[DiMauro 2003 N Engl J Med |»Bioblast link«]]
<br>
:::::: [[File:Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png|400px|link=Esparza-Molto 2020 Antioxid Redox Signal]]
:::: '''xx''' Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. '''Antioxid Redox Signal''' 33:927-45. - [[Esparza-Molto 2020 Antioxid Redox Signal |»Bioblast link«]]
<br>
:::::: [[File:Frangos 2023 J Biol Chem CORRECTION.png|250px|link=Frangos 2023 J Biol Chem]]
:::: '''xx''' Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. '''J Biol Chem''' 299:105079. - [[Frangos 2023 J Biol Chem |»Bioblast link«]]
<br>
:::::: [[File:Hinder 2019 Sci Rep CORRECTION.png|400px|link=Hinder 2019 Sci Rep]]
:::: '''xx''' Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. '''Sci Rep''' 9:881. - [[Hinder 2019 Sci Rep |»Bioblast link«]]
<br>
:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
<br>
:::::: [[File:Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png|400px|link=Kikusato 2016 Proc Jpn Soc Anim Nutr Metab]]
:::: '''xx''' Kikusato M, Furukawa K, Kamizono T, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. '''Proc Jpn Soc Anim Nutr Metab''' 60:57-68. - [[Kikusato 2016 Proc Jpn Soc Anim Nutr Metab |»Bioblast link«]]
<br>
:::::: [[File:Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Kraegen 2008 Proc Natl Acad Sci U S A]]
:::: '''xx''' Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. '''Proc Natl Acad Sci U S A''' 105:7627-8. - [[Kraegen 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
<br>
:::::: [[File:Loussouarn 2021 Front Immunol CORRECTION.png|400px|link=Loussouarn 2021 Front Immunol]]
:::: '''xx''' Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. '''Front Immunol''' 12:623973. - [[Loussouarn 2021 Front Immunol |»Bioblast link«]]
<br>
:::::: [[File:Ma 2018 Cancer Lett CORRECTION.png|250px|link=Ma 2018 Cancer Lett]]
:::: '''xx''' Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. '''Cancer Lett''' 435:92-100. - [[Ma 2018 Cancer Lett |»Bioblast link«]]
<br>
:::::: [[File:Ma 2020 Sci Rep CORRECTION.png|250px|link=Ma 2020 Sci Rep]]
:::: '''xx''' Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. '''Sci Rep''' 10:1450. - [[Ma 2020 Sci Rep |»Bioblast link«]]
<br>
:::::: [[File:Massart 2013 Curr Pathobiol Rep CORRECTION.png|400px|link=Massart 2013 Curr Pathobiol Rep]]
:::: '''xx''' Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. '''Curr Pathobiol Rep''' 1:147–57. - [[Massart 2013 Curr Pathobiol Rep |»Bioblast link«]]
<br>
:::::: [[File:Merritt 2020 Rev Endocr Metab Disord CORRECTION.png|300px|link=Merritt 2020 Rev Endocr Metab Disord]]
:::: '''xx''' Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. '''Rev Endocr Metab Disord''' 21:479-93. - [[Merritt 2020 Rev Endocr Metab Disord |»Bioblast link«]]
<br>
:::::: [[File:Murray 2009 Genome Med CORRECTION.png|300px|link=Murray 2009 Genome Med]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
<br>
:::::: [[File:Picard 2012 Am J Respir Crit Care Med CORRECTION.png|250px|link=Picard 2012 Am J Respir Crit Care Med]]
:::: '''xx''' Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. '''Am J Respir Crit Care Med''' 186:1140-9. - [[Picard 2012 Am J Respir Crit Care Med |»Bioblast link«]]
<br>
:::::: [[File:Picard 2018 Biol Psychiatry CORRECTION.png|250px|link=Picard 2018 Biol Psychiatry]]
:::: '''xx''' Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. '''Psychosom Med''' 80:141-53. - [[Picard 2018 Psychosom Med |»Bioblast link«]]
:::::: '''xx''' Copied by: Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. '''Biol Psychiatry''' 84:9-17. - [[Picard 2018 Biol Psychiatry |»Bioblast link«]]
:::::: '''xx''' Copied by: Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. '''Brain Behav Immun Health''' 5:100080. - [[Karan 2020 Brain Behav Immun Health |»Bioblast link«]]
:::::: '''xx''' Copied by: Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. '''Sci Rep''' 11:11595. - [[Bindra 2021 Sci Rep |»Bioblast link«]]
:::::: '''xx''' Copied by: Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. '''Elife''' 10:e70899. - [[Rausser 2021 Elife |»Bioblast link«]]
<br>
:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|300px|link=Prasun 2020 J Diabetes Metab Disord]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
<br>
:::::: [[File:Rinaldo 2002 Annu Rev Physiol CORRECTION.png|400px|link=Rinaldo 2002 Annu Rev Physiol]]
:::: '''xx''' Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. '''Annu Rev Physiol''' 64:477-502. - [[Rinaldo 2002 Annu Rev Physiol |»Bioblast link«]]
:::: '''xx''' Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. '''Methods Cell Biol''' 155:83-120. - [[Bennett 2020 Methods Cell Biol |»Bioblast link«]]
<br>
:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
<br>
:::::: [[File:Vockley 2021 Cambridge Univ Press CORRECTION.png|400px|link=Vockley 2021 Cambridge Univ Press]]
:::: '''xx''' Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. '''Cambridge Univ Press''':611-27. https://doi.org/10.1017/9781108918978.034 - [[Vockley 2021 Cambridge Univ Press |»Bioblast link«]]
<br>
:::::: [[File:Zhang 2021 Cells CORRECTION.png|400px|link=Zhang 2021 Cells]]
:::: '''xx''' Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. '''Cells''' 11:131. - [[Zhang 2021 Cells |»Bioblast link«]]
<br>
:::::: [[File:CHM333 LECTURES CORRECTION.png|250px]]
:::: '''xx''' [https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna]
<br>


  (retrieved 2023-03-21 to 2023-05-02)
  (retrieved 2023-03-21 to 2023-05-02)

Revision as of 18:19, 24 October 2023

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6

» MitoFit Preprints 2023.3.v6.

MitoFit pdf

Complex II ambiguities ― FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Version 6 (v6) 2023-06-21 10.26124/mitofit:2023-0003.v6
Version 5 (v5) 2023-05-31
Version 4 (v4) 2023-05-12
Version 3 (v3) 2023-05-04
Version 2 (v2) 2023-04-04
Version 1 (v1) 2023-03-24 - »Link to all versions«

The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the coenzyme Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Keywords: coenzyme Q junction, Q-junction; Complex II, CII; electron transfer system, ETS; fatty acid oxidation, FAO; flavin adenine dinucleotide, FAD/FADH2; nicotinamide adenine dinucleotide, NAD+/NADH; succinate dehydrogenase, SDH; tricarboxylic acid cycle, TCA

O2k-Network Lab: AT Innsbruck Oroboros

ORCID: ORCID.png Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria

N-S FADH2-FMNH2.png

Figure 1. Complex II (SDH) bridges H+-linked electron transfer from the TCA cycle (matrix-ETS) to the electron transfer system (membrane-ETS) of the mt-inner membrane (mtIM). (a) NADH+H+ and (b) succinate are substrates of 2{H++e-} transfer to CI and CII, respectively, with prosthetic groups FMN and FAD as the corresponding electron acceptors. (c) Symbolic representation of ETS pathway architecture. Electron flow converges at the N-junction (NAD+ → NADH+H+). Electron flow from NADH and succinate S converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome c and in CIV to molecular O2, 2{H++e-}+0.5 O2 ⇢ H2O. (d) NADH+H+ and NAD+ cycle between matrix-dehydrogenases and CI, whereas FAD and FADH2 cycle permanently bound within the same enzyme CII. Succinate and fumarate indicate the chemical entities irrespective of ionization, but charges are shown in NADH, NAD+, and H+. Joint pairs of half-circular arrows distinguish electron transfer 2{H++e­-} to CI and CII from vectorial H+ translocation across the mtIM (H+neg → H+pos). CI and CIII pump hydrogen ions from the negatively (neg) to the positively charged compartment (pos). (e) Iconic representation of SDH subunits. SDHA catalyzes the oxidation succinate → fumarate + 2{H++e-} and reduction FAD + 2{H++e-} → FADH2 in the soluble domain of CII. The iron–sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is reduced to ubiquinol UQH2 in SDHC and SDHD.

Acknowledgements: I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1d and e. The constructive comments of an anonymous reviewer (J Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Supplement 1. Footnotes on terminology

‘The dissociable, low-relative-molecular-mass active group of an enzyme which transfers chemical groups, hydrogen, or electrons. A coenzyme binds with its associated protein (apoenzyme) to form the active enzyme (holoenzyme) (Burtis, Geary 1994). ‘A low-molecular-weight, non-protein organic compound participating in enzymatic reactions as dissociable acceptor or donor of chemical groups or electrons’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:23354 (CHEBI:23354, retrieved 2023-06-21). A coenzyme or cosubstrate is a cofactor that is attached loosely and transiently to an enzyme. NADH is listed as a coenzyme, which should be regarded as a substrate of pyridine-linked dehydrogenases (Lehninger 1975).
A cofactor is 'an organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely (coenzyme) or tightly (prosthetic group)' - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=23357 (CHEBI:23357, retrieved 2023-06-21).
The convergent architecture of the electron transfer system is emphasized in contrast to linear electron transfer chains ETCs within segments of the ETS.
  • Electron transfer:
A distinction is necessary between electron transfer in redox reactions and electron transport (translocation) in the diffusion of charged ionic species within or between cellular compartments. The symbol 2{H++e} is introduced to indicate H+-linked electron transfer of two hydrogen ions and two electrons in a redox reaction.
  • Gibbs force:
In contrast to the extensive quantity Gibbs energy [J], Gibbs force [J·mol-1] is an intensive quantity expressed as the partial derivative of Gibbs energy [J] per advancement of a reaction [mol] (Gnaiger 1993; 2020).
  • H+-linked electron transfer:
The term H+-coupled electron transfer (Hsu et al 2022) is replaced by H+-linked electron transfer, to avoid confusion with coupled H+ translocation.
  • Matrix-ETS:
Electron transfer and corresponding OXPHOS capacities are classically studied in mitochondrial preparations as oxygen consumption supported by various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; Gnaiger et al 2020).
  • Membrane-ETS:
Electron transfer is frequently considered as the segment of redox reactions linked to the mtIM. However, the membrane-ETS is only part of the total ETS, which includes the upstream matrix-ETS.
  • Misinformation:
Misinformation is the mistaken sharing of the same content (Wardle 2023).
A prosthetic group is a cofactor that is ‘a tightly bound, specific nonpolypeptide unit in a protein determining and involved in its biological activity’ - https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:26348 (CHEBI:26348, retrieved 2023-06-21). A prosthetic group is attached permanently and tightly or even covalently to an enzyme and that is regenerated in each enzymatic turnover. FAD is the prosthetic group of flavin-linked dehydrogenases, covalently bound to CII.
A substrate in a chemical reaction has a negative stoichiometric number since it is consumed, whereas a product has a positive stoichiometric number since it is produced. The general definition of a substrate in an enzyme-catalized reaction relies on the definition of the chemical reaction, without restriction to the nature of the substrate, i.e. independent of the substrate being a chemical entity in solution or a loosely bound cosubstrate (coenzyme) or even a tightly bound prosthetic group. The latter may be explicitly distinguished as a bound (internal) substrate from a free (external) substrate. Even different substrate pools may coexist (CoQ).
  • 2{H++e-}
In H+-linked two-electron transfer, 2H+ + 2e-, ‘the terms reducing equivalents or electron equivalents are used to refer to electrons and/or hydrogen atoms participating in oxidoreductions’ (Lehninger 1975). The symbol 2[H] is frequently used to distinguish reducing equivalents in the transfer from hydrogen donors to hydrogen acceptors from aqueous H+. Acid-base reactions obtain equilibrium fast without catalyst, whereas the slow oxidation-reduction reactions require an enzyme to proceed. However, 2[H] does not explicitly express that it applies to both electron and hydrogen ion transfer. Brackets are avoided to exclude the confusion with amount-of-substance concentrations frequently indicated by brackets. H+-linked two-electron transfer 2{H++e-} is distinguished from single-electron transfer {H+}+{e-}.


Beyond version 6

Last update: 2023-10-24

SDH: FAD ⟶ FADH2; CII: FADH2 ⟶ FAD

Arnold, Finley 2022 CORRECTION.png
a Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - »Bioblast link«


Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
xx Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - »Bioblast link«


Begriche 2011 J Hepatol CORRECTION.png
xx Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773-94. - »Bioblast link«


Beier 2015 FASEB J CORRECTION.png
c Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. FASEB J 29:2315-26. - »Bioblast link«


Begum 2023 WIREs Mech Dis CORRECTION.png
xx Begum HM, Shen K (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. ‘’’WIREs Mech Dis‘‘‘ 15:e1595. - »Bioblast link«



Bhargava 2017 Nat Rev Nephrol CORRECTION.png
xx Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629-46. - »Bioblast link«


Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png
xx Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866:165759. - »Bioblast link«


Camara 2011 Front Physiol CORRECTION.png
xx Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. ‘’’Front Physiol’’’ 2:13. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png
g Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
d,e Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - »Bioblast link«


Cogliati 2021 Biochem Soc Trans CORRECTION.png
xx Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - »Bioblast link«


Cowan 2019 CNS Neurosci Ther CORRECTION.png
xx Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 25:825-36. - »Bioblast link«


De Beauchamp 2022 Leukemia CORRECTION.png
l de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 36:1-12. - »Bioblast link«


DeBerardinis, Chandel 2016 CORRECTION.png
f DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - »Bioblast link«


Du 2023 bioRxiv CORRECTION.png
xx Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. bioRxiv 2023.05.24.542198. - »Bioblast link«


Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png
xx Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. Antioxid Redox Signal 33:927-45. - »Bioblast link«


Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png
xx Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. Front Biosci (Schol Ed) 12:200-21. - »Bioblast link«


Fahlbusch 2022 Int J Mol Sci CORRECTION.png
xx Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci 23:6873. - »Bioblast link«


Fink 2018 J Biol Chem CORRECTION.png
i Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - »Bioblast link«


Fromenty 2023 J Hepatol CORRECTION.png
xx Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78:415-29. - »Bioblast link«


Gammon 2019 Cells CORRECTION.png
xx Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET in vivo. Cells 8:1487. - »Bioblast link«


Hamanaka 2013 Cell Logist CORRECTION.png
j Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist 3:e25456. - »Bioblast link«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
l Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - »Bioblast link«


Hinder 2019 Sci Rep CORRECTION.png
xx Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 9:881. - »Bioblast link«


Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png
xx Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. Mitochondrion 71:17-25. - »Bioblast link«


File:Jones, Bennett 2017 Chapter 4 CORRECTION.png
n Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - »Bioblast link«


Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png
xx Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. Proc Jpn Soc Anim Nutr Metab 60:57-68. - »Bioblast link«


Koopman 2016 Nat Protoc CORRECTION.png
xx Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11:1798-816. - »Bioblast link«


Luo 2015 J Diabetes Res CORRECTION.png
xx Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. J Diabetes Res 2015:512618. - »Bioblast link«


Madamanchi 2007 Circ Res CORRECTION.png
xx Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460-73. - »Bioblast link«


Martinez-Reyes 2020 Nature CORRECTION.png
p Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288-92. - »Bioblast link«


Martinez-Reyes, Chandel 2020 CORRECTION.png
q Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - »Bioblast link«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
xx Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147–57. - »Bioblast link«


Missaglia 2021 CORRECTION.png
r Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - »Bioblast link«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
xx Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - »Bioblast link«


Nolfi-Donegan 2020 Redox Biol CORRECTION.png
s Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - »Bioblast link«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
t Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - »Bioblast link«


Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png
u Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep 23:70. - »Bioblast link«


Peng 2022 Front Oncol CORRECTION.png
w Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. Front Oncol 12:899502. - »Bioblast link«


Protti 2006 Crit Care CORRECTION.png
xx Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228. - »Bioblast link«


Rai 2022 G3 (Bethesda) CORRECTION.png
xx Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 (Bethesda) 12:jkac115. - »Bioblast link«


Sadri 2023 Arch Biochem Biophys CORRECTION.png
xx Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch Biochem Biophys 744:109690. - »Bioblast link«


Sanchez et al 2001 CORRECTION.png
μ Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - »Bioblast link«


Scandella 2023 Trends Endocrinol Metab CORRECTION.png
xx Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 34:446-61. - »Bioblast link«


Schwartz 2022 JACC Basic Transl Sci CORRECTION.png
xx Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. JACC Basic Transl Sci 7:1161-79. - »Bioblast link«


Shen 2021 Cells CORRECTION.png
xx Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. Cells 10:1772. - »Bioblast link«


Shinmura 2013 Oxid Med Cell Longev CORRECTION.png
x Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev 2013:528935. - »Bioblast link«


Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«


Wilson 2023 Trends Cell Biol CORRECTION.png
xx Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. Trends Cell Biol 33:788-802. - »Bioblast link«


Yusoff 2015 InTech CORRECTION.png
xx Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. J Cancer Res Ther 11:535-44. - »Bioblast link«


xx Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech: http://dx.doi.org/10.5772/58965 - »Bioblast link«



FADH2 ⟶ FAD

Additions to Supplements

Achreja 2022 Nat Metab CORRECTION.png
xx Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D (2022) Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat Metab 4:1119-37. - »Bioblast link«


Alegre 2019 Am J Transplant CORRECTION.png
xx Alegre ML (2019) Treg respiration. Am J Transplant 19:969. - »Bioblast link«


Ali 2023 Trends Cell Biol CORRECTION.png
xx Ali ES, Ben-Sahra I (2023) Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 33:950-66. - »Bioblast link«


Alston 2017 J Pathol CORRECTION.png
xx Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236-50. - »Bioblast link«


Andrieux 2021 Int J Mol Sci CORRECTION.png
xx Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS (2021) Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci 22:11338. - »Bioblast link«


Anoar 2021 Front Neurosci CORRECTION.jpg
xx Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 15:786076. - »Bioblast link«


Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
xx Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - »Bioblast link«


Bayona-Bafaluy 2021 Redox Biol CORRECTION.png
xx Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E (2021) Down syndrome is an oxidative phosphorylation disorder. Redox Biol 41:101871. - »Bioblast link«


Begriche 2011 J Hepatol CORRECTION.png
xx Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773-94. - »Bioblast link«


Bellance 2009 Front Biosci (Landmark Ed) CORRECTION.png
xx Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci (Landmark Ed) 14:4015-34. - »Bioblast link«


Bennett 2022 Nat Rev Mol Cell Biol CORRECTION.png
xx Bennett CF, Latorre-Muro P, Puigserver P (2022) Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 23:817-35. - »Bioblast link«


Bernardo 2013 Biol Chem CORRECTION.png
xx Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L (2013) The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. Biol Chem 394:1607-14. - »Bioblast link«


Bertero 2018 Nat Rev Cardiol CORRECTION.png
xx Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457-70. - »Bioblast link«


Bhalerao 2012 Science CORRECTION.png
xx Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. Science 336:1241-2. - »Bioblast link«


Bhargava 2017 Nat Rev Nephrol CORRECTION.png
xx Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629-46. - »Bioblast link«


Blanco 2017 Academic Press CORRECTION.png
xx Blanco A, Blanco G (2017) Chapter 9 - Biological oxidations: bioenergetics. In Blanco A, Blanco G, eds, Medical biochemistry. Academic Press:177-204. - »Bioblast link«


Boukalova 2020 Biochim Biophys Acta Mol Basis Dis CORRECTION.png
xx Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866:165759. - »Bioblast link«


Bratic 2013 J Clin Invest CORRECTION.png
xx Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951-7. - »Bioblast link«


Breuer 2013 Neurobiol Dis CORRECTION.png
xx Breuer ME, Koopman WJ, Koene S, Nooteboom M, Rodenburg RJ, Willems PH, Smeitink JA (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27-34. - »Bioblast link«


Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png
xx Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. Biochim Biophys Acta Bioenerg 1862:148335. - »Bioblast link«


Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png
xx Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 315:F1613-25. - »Bioblast link«


Burgin 2020 FEBS Lett CORRECTION.png
xx Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 594:590-610. - »Bioblast link«


Catania 2019 Orphanet J Rare Dis CORRECTION.png
xx Catania A, Iuso A, Bouchereau J, Kremer LS, Paviolo M, Terrile C, Bénit P, Rasmusson AG, Schwarzmayr T, Tiranti V, Rustin P, Rak M, Prokisch H, Schiff M (2019) Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Orphanet J Rare Dis 14:236. - »Bioblast link«


Cerqua 2021 Springer Cham CORRECTION.png
xx Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. Springer, Cham In: Navas P, Salviati L (eds) Mitochondrial diseases. - »Bioblast link«


Chang 2023 Front Endocrinol (Lausanne) CORRECTION.png
xx Chang JS (2023) Recent insights into the molecular mechanisms of simultaneous fatty acid oxidation and synthesis in brown adipocytes. Front Endocrinol (Lausanne) 14:1106544. - »Bioblast link«


Che 2023 Plant Cell Environ CORRECTION.png
xx Che X, Zhang T, Li H, Li Y, Zhang L, Liu J (2023) Nighttime hypoxia effects on ATP availability for photosynthesis in seagrass. Plant Cell Environ 46:2841-50. - »Bioblast link«


Chen 2014 Circ Res CORRECTION.png
xx Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524-37. - »Bioblast link«
  • Copied (without reference) by: Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - »Bioblast link«


Chinopoulos 2013 J Neurosci Res CORRECTION.png
xx Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J Neurosci Res 91:1030-43. - »Bioblast link«


Choudhury 2021 Antioxidants (Basel) CORRECTION.png
xx Choudhury FK (2021) Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression. Antioxidants (Basel) 10:1838. - »Bioblast link«


Cogliati 2021 Biochem Soc Trans CORRECTION.png
xx Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - »Bioblast link«


Cojocaru 2023 Antioxidants (Basel) CORRECTION.png
xx Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel) 12:658. - »Bioblast link«


Connolly 2018 Cell Death Differ CORRECTION.png
xx Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 25:542-72. - »Bioblast link«


Covarrubias 2021 Nat Rev Mol Cell Biol CORRECTION.png
xx Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22:119-41. - »Bioblast link«


Cowan 2019 CNS Neurosci Ther CORRECTION.png
xx Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 25:825-36. - »Bioblast link«


Dawson 2021 Open Library CORRECTION.png
xx Dawson J (2021) Oxidative Phosphorylation: The Electron Transport Chain. Chapter 23. Open Library. - »Bioblast link«


DeBalsi 2017 Ageing Res Rev CORRECTION.png
xx DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33:89-104. - »Bioblast link«


Diaz 2023 Front Mol Biosci CORRECTION.png
xx Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 10:1136975. - »Bioblast link«


DiMauro 2003 N Engl J Med CORRECTION.png
xx DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656-68. - »Bioblast link«


Distelmaier 2009 Brain CORRECTION.png
xx Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833-42. - »Bioblast link«


Du 2023 bioRxiv CORRECTION.png
xx Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY (2023) Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. bioRxiv 2023.05.24.542198. - »Bioblast link«


Duan 2019 Aging (Albany NY) CORRECTION.png
xx Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C (2019) Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 11:7307-27. - »Bioblast link«


Dumollard 2007 Development CORRECTION.png
xx Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. Development 134:455-65. - »Bioblast link«


Egan 2023 Physiol Rev CORRECTION.png
xx Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103:2057-2170. - »Bioblast link«


Ekbal 2013 Chest CORRECTION.png
xx Ekbal NJ, Dyson A, Black C, Singer M (2013) Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. Chest 143:1799-1808. - »Bioblast link«


Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png
xx Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. Antioxid Redox Signal 33:927-45. - »Bioblast link«


Ezeani 2020 Front Biosci (Schol Ed) CORRECTION.png
xx Ezeani M (2020) Aberrant cardiac metabolism leads to cardiac arrhythmia. Front Biosci (Schol Ed) 12:200-21. - »Bioblast link«


Fahlbusch 2022 Int J Mol Sci CORRECTION.png
xx Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J (2022) Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci 23:6873. - »Bioblast link«


Faria 2023 Pharmaceutics CORRECTION.png
xx Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. Pharmaceutics 15:572. - »Bioblast link«


Favia 2019 J Clin Med CORRECTION.png
xx Favia M, de Bari L, Bobba A, Atlante A (2019) An intriguing involvement of mitochondria in cystic fibrosis. J Clin Med 8:1890. - »Bioblast link«


Floenes 2022 Front Cell Dev Biol CORRECTION.png
xx Flønes IH, Tzoulis C (2022) Mitochondrial respiratory chain dysfunction-a hallmark pathology of idiopathic Parkinson's disease? Front Cell Dev Biol 10:874596. - »Bioblast link«


Fogg 2011 Chin J Cancer CORRECTION.png
xx Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526-39. - »Bioblast link«


Foo 2022 Trends Microbiol CORRECTION.png
xx Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 30:679-92. - »Bioblast link«


Forbes 2018 Nat Rev Nephrol CORRECTION.png
xx Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14:291-312. - »Bioblast link«


Frangos 2023 J Biol Chem CORRECTION.png
xx Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - »Bioblast link«


Fromenty 2023 J Hepatol CORRECTION.png
xx Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78:415-29. - »Bioblast link«


Gallinat 2022 Int J Mol Sci CORRECTION.png
xx Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. Int J Mol Sci 23:2087. - »Bioblast link«


Gammon 2019 Cells CORRECTION.png
xx Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D (2019) Mechanism-specific pharmacodynamics of a novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [18F]FAZA PET in vivo. Cells 8:1487. - »Bioblast link«


Gao 2022 EBioMedicine CORRECTION.png
xx Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC (2022) Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. EBioMedicine 83:104215. - »Bioblast link«


Garcia-Neto 2017 PLOS ONE CORRECTION.png
xx Garcia-Neto W, Cabrera-Orefice A, Uribe-Carvajal S, Kowaltowski AJ, Alberto Luévano-Martínez L (2017) High osmolarity environments activate the mitochondrial alternative oxidase in Debaryomyces Hansenii. PLOS ONE 12:e0169621. - »Bioblast link«


Garrido-Perez 2020 Int J Mol Sci CORRECTION.png
xx Garrido-Pérez N, Vela-Sebastián A, López-Gallardo E, Emperador S, Iglesias E, Meade P, Jiménez-Mallebrera C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E (2020) Oxidative phosphorylation dysfunction modifies the cell secretome. Int J Mol Sci 21:3374. - »Bioblast link«


Gatti 2020 Front Pharmacol CORRECTION.png
xx Gatti P, Ilamathi HS, Todkar K, Germain M (2020) Mitochondria targeted viral replication and survival strategies-prospective on SARS-CoV-2. Front Pharmacol 11:578599. - »Bioblast link«


Geng 2023 Front Physiol CORRECTION.png
xx Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 14:1239643. - »Bioblast link«


Gero 2018 IntechOpen CORRECTION.png
xx Gero D (2023) Hyperglycemia-induced endothelial dysfunction. IntechOpen Chapter 8. - »Bioblast link«


Giachin 2021 Angew Chem Int Ed Engl CORRECTION.png
xx Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M (2021) Assembly of the mitochondrial Complex I assembly complex suggests a regulatory role for deflavination. Angew Chem Int Ed Engl 60:4689-97. - »Bioblast link«


Glombik 2021 Cells CORRECTION.png
xx Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. Cells 10:2937. - »Bioblast link«


Gopan 2021 World J Hepatol CORRECTION.png
xx Gopan A, Sarma MS (2021) Mitochondrial hepatopathy: Respiratory chain disorders- 'breathing in and out of the liver'. World J Hepatol 13:1707-26. - »Bioblast link«


Grasso 2020 Cell Stress CORRECTION.png
xx Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P (2020) Mitochondria in cancer. Cell Stress 4:114-46. - »Bioblast link«


Gujarati 2020 Am J Physiol Renal Physiol CORRECTION.png
xx Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK (2020) The complicated role of mitochondria in the podocyte. Am J Physiol Renal Physiol 319:F955-65. - »Bioblast link«


Hanna 2022 Front Cell Dev Biol CORRECTION.png
xx Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C (2022) Beyond genetics: the role of metabolism in photoreceptor survival, development and repair. Front Cell Dev Biol 10:887764. - »Bioblast link«


Hinder 2019 Sci Rep CORRECTION.png
xx Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 9:881. - »Bioblast link«


Howie 2014 Front Immunol CORRECTION.png
xx Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. Front Immunol 5:409. - »Bioblast link«


Huss 2005 J Clin Invest CORRECTION.png
xx Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547-55. - »Bioblast link«


Intlekofer 2019 Nat Metab CORRECTION.png
xx Intlekofer AM, Finley LWS (2019) Metabolic signatures of cancer cells and stem cells. Nat Metab 1:177-88. - »Bioblast link«


Jaramillo-Jimenez 2023 Mitochondrion CORRECTION.png
xx Jaramillo-Jimenez A, Giil LM, Borda MG, Tovar-Rios DA, Kristiansen KA, Bruheim P, Aarsland D, Barreto GE, Berge RK (2023) Serum TCA cycle metabolites in Lewy bodies dementia and Alzheimer's disease: network analysis and cognitive prognosis. Mitochondrion 71:17-25. - »Bioblast link«


Javali 2023 Biogerontology CORRECTION.png
xx Javali PS, Sekar M, Kumar A, Thirumurugan K (2023) Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. Biogerontology 24:663-78. - »Bioblast link«


Jayasankar 2022 ACS Omega CORRECTION.png
xx Jayasankar V, Vrdoljak N, Roma A, Ahmed N, Tcheng M, Minden MD, Spagnuolo PA (2022) Novel mango ginger bioactive (2,4,6-trihydroxy-3,5-diprenyldihydrochalcone) inhibits mitochondrial metabolism in combination with Avocatin B. ACS Omega 7:1682-93. - »Bioblast link«


Jezek 2023 Antioxid Redox Signal CORRECTION.png
xx Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid Redox Signal. https://doi.org/10.1089/ars.2022.0173 - »Bioblast link«


Jia 2018 Cells CORRECTION.png
xx Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7:21. - »Bioblast link«


Jochmanova 2016 Clin Cancer Res CORRECTION.png
xx Jochmanova I, Pacak K (2016) Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res 22:5001-11. - »Bioblast link«


Johnson 2013 Eukaryot Cell CORRECTION.png
xx Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776-93. - »Bioblast link«


Joshi 2022 Biomolecules CORRECTION.png
xx Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12:880. - »Bioblast link«


Kalainayakan 2018 Cell Biosci CORRECTION.png
xx Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 8:56. - »Bioblast link«


Keidar 2023 Front Physiol CORRECTION.png
xx Keidar N, Peretz NK, Yaniv Y (2023) Ca2+ pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. Front Physiol 14:1231259. - »Bioblast link«


Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png
xx Kikusato M, Furukawa K, Kamizono, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. Proc Jpn Soc Anim Nutr Metab 60:57-68. - »Bioblast link«


Klimova 2008 Cell Death Differ CORRECTION.png
xx Klimova T, Chandel NS (2008) Mitochondrial Complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660-6. - »Bioblast link«


Knottnerus 2018 Rev Endocr Metab Disord CORRECTION.png
xx Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH (2018) Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 19:93-106. - »Bioblast link«


Koene 2011 J Inherit Metab Dis CORRECTION.png
xx Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J Inherit Metab Dis 34:293-307. - »Bioblast link«


Koopman 2016 Nat Protoc CORRECTION.png
xx Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11:1798-816. - »Bioblast link«


Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png
xx Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105:7627-8. - »Bioblast link«


Kuznetsov 2022 Antioxidants (Basel) CORRECTION.png
xx Kuznetsov AV, Margreiter R, Ausserlechner MJ, Hagenbuchner J (2022) The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants (Basel) 11:1995. - »Bioblast link«


LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png
xx LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 119:e2122287119. - »Bioblast link«


Lautrup 2019 Cell Metab CORRECTION.png
xx Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD+ in brain aging and neurodegenerative disorders. Cell Metab 30:630-55. - »Bioblast link«


Lee 2023 Antioxidants (Basel) CORRECTION.png
xx Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. Antioxidants (Basel) 12:1359. - »Bioblast link«


Lettieri-Barbato 2019 Mol Metab CORRECTION.png
xx Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. Mol Metab 25:11-9. - »Bioblast link«


Lima 2021 Nat Metab CORRECTION.png
xx Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 3:1091-108. - »Bioblast link«


Liskova 2021 Int J Mol Sci CORRECTION.png
xx Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders-analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. Int J Mol Sci 22:2007. - »Bioblast link«


Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png
xx Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. Am J Physiol Heart Circ Physiol 319:H89-99. - »Bioblast link«


Liu 2023 Int J Biol Sci CORRECTION.png
xx Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y (2023) An overview: the diversified role of mitochondria in cancer metabolism. Int J Biol Sci 19:897-915. - »Bioblast link«


Loussouarn 2021 Front Immunol CORRECTION.png
xx Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front Immunol 12:623973. - »Bioblast link«


Lozano 2019 Oxid Med Cell Longev CORRECTION.png
xx Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, Alves-Figueiredo H, García-Rivas G (2019) Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. Oxid Med Cell Longev 2019:7683051. - »Bioblast link«


Lu 2023 Explor Res Hypothesis Med CORRECTION.png
xx Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. Explor Res Hypothesis Med 8:280-5. - »Bioblast link«


Luo 2015 J Diabetes Res CORRECTION.png
xx Luo X, Li R, Yan LJ (2015) Roles of pyruvate, NADH, and mitochondrial Complex I in redox balance and imbalance in β cell function and dysfunction. J Diabetes Res 2015:512618. - »Bioblast link«


Ma 2018 Cancer Lett CORRECTION.png
xx Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - »Bioblast link«


Ma 2020 Sci Rep CORRECTION.png
xx Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - »Bioblast link«


Madamanchi 2007 Circ Res CORRECTION.png
xx Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460-73. - »Bioblast link«


Maffezzini 2020 Cell Mol Life Sci CORRECTION.jpg.png
xx Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 77:2483-96. - »Bioblast link«


Martell 2023 Nat Commun CORRECTION.png
xx Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 14:2502. - »Bioblast link«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
xx Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147–57. - »Bioblast link«


Mathiyazakan 2023 Antimicrob Agents Chemother CORRECTION.png
xx Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G (20) Cryo-electron microscopy structure of the Mycobacterium tuberculosis cytochrome bcc:aa3 supercomplex and a novel inhibitor targeting subunit cytochrome cI. Antimicrob Agents Chemother 67:e0153122. - »Bioblast link«


Mathur 2017 Front Cell Neurosci CORRECTION.png
xx Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. Front Cell Neurosci 11:209. - »Bioblast link«


Merlin 2021 Nat Metab CORRECTION.png
xx Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L (2021) Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat Metab 3:1313-26. - »Bioblast link«


Merritt 2020 Rev Endocr Metab Disord CORRECTION.png
xx Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord 21:479-93. - »Bioblast link«


Middleton 2021 Therap Adv CORRECTION.png
xx Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394. - »Bioblast link«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
xx Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - »Bioblast link«


Moudgil 2005 J Appl Physiol (1985) CORRECTION.png
xx Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 98:390-403. - »Bioblast link«


Mracek 2013 Biochim Biophys Acta CORRECTION.png
xx Mracek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827:401-10. - »Bioblast link«


Mueller 2023 Int J Mol Sci CORRECTION.png
xx Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A (2023) Mitochondrial integrity is critical in right heart failure development. Int J Mol Sci 24:11108. - »Bioblast link«


Murray 2009 Genome Med CORRECTION.png
xx Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117. - »Bioblast link«


Musicco 2023 Int J Mol Sci CORRECTION.png
xx Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. Int J Mol Sci 24:10420. - »Bioblast link«


Narine 2022 Front Cell Neurosci CORRECTION.png
xx Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - »Bioblast link«


Pena-Corona 2023 Front Pharmacol CORRECTION.png
xx Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. Front Pharmacol 14:1206334. - »Bioblast link«


Pacifico 2023 Int J Mol Sci CORRECTION.png
xx Pacifico F, Leonardi A, Crescenzi E (2023) Glutamine metabolism in cancer stem cells: a complex liaison in the tumor microenvironment. Int J Mol Sci 24:2337. - »Bioblast link«


Pendleton 2023 Front Cell Dev Biol CORRECTION.png
xx Pendleton KE, Wang K, Echeverria GV (2023) Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 11:1254313. - »Bioblast link«


Perouansky 2023 Exp Biol Med (Maywood) CORRECTION.png
xx Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG (2023) A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. Exp Biol Med (Maywood) 248:545-52. - »Bioblast link«


Pharaoh 2023 Geroscience CORRECTION.png
xx Pharaoh G, Kamat V, Kannan S, Stuppard RS, Whitson J, Martín-Pérez M, Qian WJ, MacCoss MJ, Villén J, Rabinovitch P, Campbell MD, Sweet IR, Marcinek DJ (2023) The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT). Geroscience https://doi.org/10.1007/s11357-023-00861-y - »Bioblast link«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
xx Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - »Bioblast link«


Prasun 2020 J Diabetes Metab Disord CORRECTION.png
xx Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19:2017-22. - »Bioblast link«


Preston 2023 Academic Press CORRECTION.png
xx Preston G, El Soufi El Sabbagh D, Emmerzaal TL, Morava E, Andreazza AC, Rahman S, Kozicz T (2023) Antidepressants, mood-stabilizing drugs, and mitochondrial functions: For better or for worse. In: de Oliveira MR (ed) Mitochondrial intoxication:323-49. Academic Press. - »Bioblast link«


Protasoni 2021 Int J Mol Sci CORRECTION.png
xx Protasoni M, Zeviani M (2021) Mitochondrial structure and bioenergetics in normal and disease conditions. Int J Mol Sci 22:586. - »Bioblast link«


Protti 2006 Crit Care CORRECTION.png
xx Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228. - »Bioblast link«


Puntel 2013 Toxicol In Vitro CORRECTION.png
xx Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 27:59-70. - »Bioblast link«


Rahman 2022 Springer CORRECTION.png
xx Rahman S, Mayr JA (2022) Disorders of oxidative phosphorylation. In: Saudubray JM, Baumgartner MR, García-Cazorla Á, Walter J (eds) Inborn metabolic diseases. Springer, Berlin, Heidelberg. - »Bioblast link«


Rai 2022 G3 (Bethesda) CORRECTION.png
xx Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM (2022) The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 (Bethesda) 12:jkac115. - »Bioblast link«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
xx Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - »Bioblast link«
xx Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. Methods Cell Biol 155:83-120. - »Bioblast link«


Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png
xx Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - »Bioblast link«
xx Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements 10:1-11. - »Bioblast link«


Rose 2019 Adis CORRECTION.png
xx Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. Adis, Singapore. - »Bioblast link«


Sacchetto 2019 J Clin Med CORRECTION.png
xx Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M (2019) Metabolic alterations in inherited cardiomyopathies. J Clin Med 8:2195. - »Bioblast link«


Sadri 2023 Arch Biochem Biophys CORRECTION.png
xx Sadri S, Tomar N, Yang C, Audi SH, Cowley AW Jr, Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch Biochem Biophys 744:109690. - »Bioblast link«


Sadri 2023 Function (Oxf) CORRECTION.png
xx Sadri S, Zhang X, Audi SH, Cowley AW Jr, Dash RK (2023) Computational modeling of substrate-dependent mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla. Function (Oxf) 4:zqad038. - »Bioblast link«


Sander 2022 Rev Med Virol CORRECTION.png
xx Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG (2022) Reactive oxygen species as potential antiviral targets. Rev Med Virol 32:e2240. - »Bioblast link«


Scandella 2023 Trends Endocrinol Metab CORRECTION.png
xx Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M (2023) Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 34:446-61. - »Bioblast link«


Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png
xx Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. Curr Issues Mol Biol 45:3911-32. - »Bioblast link«


Schwartz 2022 JACC Basic Transl Sci CORRECTION.png
xx Schwartz B, Gjini P, Gopal DM, Fetterman JL (2022) Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem. JACC Basic Transl Sci 7:1161-79. - »Bioblast link«


Schinagl 2016 PLoS One CORRECTION.png
xx Schinagl CW, Vrabl P, Burgstaller W (2016) Adapting high-resolution respirometry to glucose-limited steady state mycelium of the filamentous fungus Penicillium ochrochloron: method development and standardisation. PLoS One 11:e0146878. - »Bioblast link«


Sharma 2021 Int J Mol Sci CORRECTION.png
xx Sharma C, Kim S, Nam Y, Jung UJ, Kim SR (2021) Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. Int J Mol Sci 22:4850. - »Bioblast link«


Shen 2021 Cells CORRECTION.png
xx Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH (2021) Potential therapies targeting metabolic pathways in cancer stem cells. Cells 10:1772. - »Bioblast link«


Shields 2021 Front Cell Dev Biol CORRECTION.png
xx Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol 9:628157. - »Bioblast link«


Shu 2023 Front Immunol CORRECTION.png
xx Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D (2023) Reactive oxygen species formation and its effect on CD4+ T cell-mediated inflammation. Front Immunol 14:1199233. - »Bioblast link«


Simon 2022 Function (Oxf) CORRECTION.png
xx Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. Function (Oxf) 3:zqac039. - »Bioblast link«


Sivitz 2017 Neuromethods CORRECTION.png
xx Sivitz WI (2017) Techniques to investigate bioenergetics of mitochondria. In: Strack S, Usachev Y (eds) Techniques to investigate mitochondrial function in neurons. Neuromethods 123:67-94. - »Bioblast link«


Smith 2023 Nat Rev Mol Cell Biol CORRECTION.png
xx Smith JAB, Murach KA, Dyar KA, Zierath JR (2023) Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 24:607-32. - »Bioblast link«


Sommer 2020 Sci Adv CORRECTION.png
xx Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelekovic A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M (2020) Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci Adv 6:eaba0694. - »Bioblast link«


Speijer 2016 Biochem J CORRECTION.png
xx Speijer D (2016) Being right on Q: shaping eukaryotic evolution. Biochem J 473:4103-27. - »Bioblast link«


Spinelli 2018 Nat Cell Biol CORRECTION.png
xx Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745-54. - »Bioblast link«


Steiner 2017 Int J Biochem Cell Biol CORRECTION.png
xx Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 89:125-35. - »Bioblast link«


Tanaka 2022 Cells CORRECTED.png
xx Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. Cells 11:2607. - »Bioblast link«


Tang 2014 Front Physiol CORRECTION.png
xx Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175. - »Bioblast link«


Thomas 2019 Cell Mol Life Sci CORRECTION.png
xx Thomas LW, Ashcroft M (2019) Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci 76:1759-77. - »Bioblast link«


Tian 2017 Front Genet CORRECTION.png
xx Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G (2017) Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Front Genet 8:205. - »Bioblast link«


Tirichen 2021 Front Physiol CORRECTION.png
xx Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 12:627837. - »Bioblast link«


Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«


Vartak 2013 Protein Cell CORRECTION.png
xx Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582-90. - »Bioblast link«


Vayalil 2019 Oncol Lett CORRECTION.png
xx Vayalil PK (2019) Mitochondrial oncobioenergetics of prostate tumorigenesis. Oncol Lett 18:4367-76. - »Bioblast link«


Vockley 2021 Cambridge Univ Press CORRECTION.png
xx Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. Cambridge Univ Press:611-27. https://doi.org/10.1017/9781108918978.034 - »Bioblast link«


Vorotnikov 2022 Biomedicines CORRECTION.png
xx Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? Biomedicines 10:3181. - »Bioblast link«


Wang 2019 Trends Biochem Sci CORRECTION.png
xx Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. Trends Biochem Sci 44:401-14. - »Bioblast link«


Wang 2023 Biomolecules CORRECTION.png
xx Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules 13:353. - »Bioblast link«


Wilson 2023 Trends Cell Biol CORRECTION.png
xx Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI (2023) The autophagy-NAD axis in longevity and disease. Trends Cell Biol 33:788-802. - »Bioblast link«


Wipf 2022 J Huntingtons Dis CORRECTION.png
xx Wipf P, Polyzos AA, McMurray CT (2022) A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington's disease. J Huntingtons Dis 11:3-15. - »Bioblast link«


Wu 2022 Neuromolecular Med CORRECTION.png
xx Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. Neuromolecular Med 24:18-22. - »Bioblast link«


Xia 2022 Front Oncol CORRECTION.png
xx Xia H, Huang Z, Wang Z, Liu S, Zhao X, You J, Xu Y, Yam JWP, Cui Y (2022) Glucometabolic reprogramming: From trigger to therapeutic target in hepatocellular carcinoma. Front Oncol 12:953668. - »Bioblast link«


Yan 2014 J Diabetes Res CORRECTION.png
xx Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919. - »Bioblast link«


Yang 2022 Front Cell Dev Biol CORRECTION.png
xx Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. Front Cell Dev Biol 10:841523. - »Bioblast link«


Yu 2023 Antioxidants (Basel) CORRECTION.png
xx Yu T, Wang L, Zhang L, Deuster PA (2023) Mitochondrial fission as a therapeutic target for metabolic diseases: insights into antioxidant strategies. Antioxidants (Basel) 12:1163. - »Bioblast link«


Yusoff 2015 InTech CORRECTION.png
xx Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. J Cancer Res Ther 11:535-44. - »Bioblast link«


xx Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech: http://dx.doi.org/10.5772/58965 - »Bioblast link«


Zhang 2021 Cells CORRECTION.png
xx Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. Cells 11:131. - »Bioblast link«


Zhao 2021 Mol Biomed CORRECTION.png
xx Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. Mol Biomed 2:5. - »Bioblast link«


Add to Supplement 7
Stillway LW CORRECTION.png
xx Stillway L William (2017) CHAPTER 9 Bioenergetics and Oxidative Metabolism. In: Medical Biochemistry


Beyond preprint
Grandoch 2019 Nat Metab CORRECTION.png
1 Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546-59. - »Bioblast link«
NADH is shown as the product of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when FADH2 is shown as the substrate of CII.


Lancaster 2002 Biochim Biophys Acta.png Lancaster 2001 FEBS Lett CORRECTION.png
2 Lancaster CR (2002) Succinate:quinone oxidoreductases: an overview. Biochim Biophys Acta 1553:1-6. - »Bioblast link«
fumarate + 2H+ shown besides NADH + H+ is ambiguous.
3 Lancaster CR (2001) Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase?. FEBS Lett 504:133-41. - »Bioblast link«


Supplement 2. FAD a substrate of SDH and FADH2 a substrate of CII

Figure S2. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. The TCA cycle reduces FAD to FADH2 - in several cases shown to be catalyzed by SDH. Then FADH2 is erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 2001 to 2023.


Arnold, Finley 2022 CORRECTION.png
a Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - »Bioblast link«


Bansal 2019 Academic Press CORRECTED.png
b Bansal A, Rashid C, Simmons RA (2019) Impact of fetal programming on mitochondrial function and susceptibility to obesity and type 2 diabetes. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) Academic Press. - »Bioblast link«


Beier 2015 FASEB J CORRECTION.png
c Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. FASEB J 29:2315-26. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png
g Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
d,e Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - »Bioblast link«


Cortez-Pinto 2009 J Hepatol CORRECTION.png
h Cortez-Pinto H, Machado MV (2009) Uncoupling proteins and non-alcoholic fatty liver disease. J Hepatol 50:857-60. - »Bioblast link«


De Beauchamp 2022 Leukemia CORRECTION.png
l de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 36:1-12. - »Bioblast link«


DeBerardinis, Chandel 2016 CORRECTION.png
f DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - »Bioblast link«


Fink 2018 J Biol Chem CORRECTION.png
i Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - »Bioblast link«


Hamanaka 2013 Cell Logist CORRECTION.png
j Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist 3:e25456. - »Bioblast link«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
l Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - »Bioblast link«


Himms-Hagen, Harper 2001 CORRECTION.png
k Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - »Bioblast link«


Ishii 2012 Front Oncol CORRECTION.png
m Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol 2:137. - »Bioblast link«


File:Jones, Bennett 2017 Chapter 4 CORRECTION.png
n Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - »Bioblast link«


Lewis 2019 CORRECTION.png
o Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - »Bioblast link«


Martinez-Reyes 2020 Nature CORRECTION.png
p Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288-92. - »Bioblast link«


Martinez-Reyes, Chandel 2020 CORRECTION.png
q Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - »Bioblast link«


Missaglia 2021 CORRECTION.png
r Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - »Bioblast link«


Nolfi-Donegan 2020 Redox Biol CORRECTION.png
s Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - »Bioblast link«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
t Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - »Bioblast link«


Pelletier-Galarneau 2021 Curr Cardiol Rep CORRECTION.png
u Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, El Fakhri G (2021) Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep 23:70. - »Bioblast link«


Peng 2022 Front Oncol CORRECTION.png
w Peng M, Huang Y, Zhang L, Zhao X, Hou Y (2022) Targeting mitochondrial oxidative phosphorylation eradicates acute myeloid leukemic stem cells. Front Oncol 12:899502. - »Bioblast link«


Polyzos 2017 Mech Ageing Dev CORRECTION.png
v Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - »Bioblast link«


Shinmura 2013 Oxid Med Cell Longev CORRECTION.png
x Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev 2013:528935. - »Bioblast link«



Supplement 3. FADH2 a substrate of CII

Figure S3. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Alphabetical sequence of publications from 2001 to 2023.
Balaban 2005 Cell CORRECTION.png
a Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-95. - »Bioblast link«


Bao 2021 Cells CORRECTION.png
b Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10:1715. - »Bioblast link«


Benard 2011 Springer CORRECTION.png
c Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - »Bioblast link«


Betiu 2022 Int J Mol Sci CORRECTION.png
d Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. Int J Mol Sci 23:13653. - »Bioblast link«


Beutner 2014 PLoS One CORRECTION.png
e Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330. - »Bioblast link«


Billingham 2022 Nat Immunol CORRECTION.png
f Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. - »Bioblast link«


Brownlee 2001 Nature CORRECTION.png
g Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - »Bioblast link«
Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - »Bioblast link«


Brownlee 2003 J Clin Invest CORRECTION.png
h Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112:1788-90. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png
i Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Chen 2022 Am J Physiol Cell Physiol CORRECTION.png
j Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - »Bioblast link«


Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png
k Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - »Bioblast link«


De Villiers 2018 Adv Exp Med Biol CORRECTION.png
m de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - »Bioblast link«


Delport 2017 Metab Brain Dis CORRECTION.png
n Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 32:1357-82. - »Bioblast link«


Escoll 2019 Immunometabolism CORRECTION.png
o Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes during infection. Immunometabolism 1:e190011. - »Bioblast link«


Eyenga 2022 Cells CORRECTION.png
p Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. Cells 11:1598. - »Bioblast link«


Gasmi 2021 Arch Toxicol CORRECTION.png
q Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - »Bioblast link«


Granger 2015 Redox Biol CORRECTION.png
r Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 6:524-551. - »Bioblast link«


Han 2019 Am J Respir Cell Mol Biol CORRECTION.png
s Han S, Chandel NS (2019) There is no smoke without mitochondria. Am J Respir Cell Mol Biol 60:489-91. - »Bioblast link«


Hanna 2023 Antioxid Redox Signal CORRECTION.png
t Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide signaling via electron transport chain plasticity. Antioxid Redox Signal 38:57-67. - »Bioblast link«


Jarmuszkiewicz 2023 Front Biosci CORRECTION.png
u Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. Front Biosci (Landmark Ed) 28:61. - »Bioblast link«


Keane 2011 Parkinsons Dis CORRECTION.png
v Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871. - »Bioblast link«


Kim 2010 Korean Diabetes J CORRECTION.png
w Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of mitochondrial function: implication in the pathogenesis of metabolic syndrome. Korean Diabetes J 34:146-53. - »Bioblast link«


Kumar 2021 J Biol Chem CORRECTION.png
x Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H2S oxidation. J Biol Chem 298:101435. - »Bioblast link«


Liu 2009 J Biomed Sci CORRECTION.png
y Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98. - »Bioblast link«


Martinez-Reyes 2016 Mol Cell CORRECTION.png
z Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199-209. - »Bioblast link«


McCollum 2019 Front Plant Sci CORRECTION.png
α McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. Front Plant Sci 10:1262. - »Bioblast link«


McElroy 2017 Exp Cell Res.png
β McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217-22. - »Bioblast link«


McElroy 2020 Cell Metab CORRECTION.png
γ McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. Cell Metab 32:301-8.e6. - »Bioblast link«


Morelli 2019 Open Biol CORRECTION.png
δ Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - »Bioblast link«


Nussbaum 2005 J Clin Invest CORRECTION.png
ε Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - »Bioblast link«


Prochaska 2013 Springer CORRECTION.png
ζ Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - »Bioblast link«


Radogna 2021 Methods Mol Biol CORRECTION.png
η Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell metabolism by respiratory chain electron flow assays. Methods Mol Biol 2276:129-141. - »Bioblast link«


Raimondi 2020 Br J Cancer CORRECTION.png
θ Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - »Bioblast link«


Read 2021 Redox Biol CORRECTION.png
ι Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. - »Bioblast link«


Risiglione 2020 Int J Mol Sci CORRECTION.png
κ Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - »Bioblast link«


Rodick 2018 Nutrition and Dietary Supplements CORRECTION.png
λ Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements 10:1-11. - »Bioblast link«


Sanchez et al 2001 CORRECTION.png
μ Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - »Bioblast link«


Sarmah 2019 Transl Stroke Res CORRECTION.png
ν Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - »Bioblast link«
Snyder 2009 Antioxid Redox Signal.png
ξ Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 11:2673-83. - »Bioblast link«


Srivastava 2016 Clin Transl Med CORRECTION.png
ο Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med 5:25. - »Bioblast link«


Szabo 2020 Int J Mol Sci CORRECTION.png
π Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. Int J Mol Sci 21:6344. - »Bioblast link«


Turton 2022 Int J Mol Sci CORRECTION.png
σ Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - »Bioblast link«


Vekshin 2020 Springer Cham CORRECTION.png
τ Vekshin N (2020) Biophysics of mitochondria. Springer Cham: 197 pp. - »Bioblast link«


Wang 2016 ACS Appl Mater Interfaces CORRECTION.png
υ Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl Mater Interfaces 8:24509-16. - »Bioblast link«


Yepez 2018 PLOS One Fig1B.jpg
φ Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - »Bioblast link«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
χ Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - »Bioblast link«


Zhang 2018 Mil Med Res CORRECTION.png
ψ Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - »Bioblast link«



Supplement 4. FADH2 as substrate of CII and FAD + 2H+ as products

Figure S4. Complex II ambiguities: FADH2 as substrate of CII and FAD + 2H+ as products. Alphabetical sequence of publications from 2001 to 2023.
Ahmad 2022 StatPearls CORRECTION.png
a Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - »Bioblast link«


Chen 2022 Int J Mol Sci CORRECTION.png
b Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 23:12926. - »Bioblast link«


El-Gammal 2022 Pflugers Arch CORRECTION.png
c El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. Pflugers Arch 474:1043-51. - »Bioblast link«


Hidalgo-Gutierrez CORRECTION.png
d Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants (Basel) 10:520. - »Bioblast link«


Payen 2019 Cancer Metastasis Rev CORRECTION.png
e Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 38:189-203. - »Bioblast link«


Prasuhn 2021 Front Cell Dev Biol CORRECTION.png
f Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. Front Cell Dev Biol 8:615461. - »Bioblast link«


Tseng 2022 Cells CORRECTION.png
g Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 11:4020. - »Bioblast link«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
h Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - »Bioblast link«


Yin 2021 FASEB J CORRECTION.png
i Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - »Bioblast link«


Supplement 5. FADH2 as substrate of CII and FAD+ as product

Figure S5. Complex II ambiguities: FADH2 as substrate of CII and FAD+ as product. Alphabetical sequence of publications from 2001 to 2023.
Area-Gomez 2019 J Clin Invest CORRECTED.png
a Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S (2019) Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 129:34-45. - »Bioblast link«


Carriere 2019 Academic Press CORRECTION.png
b Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, Pénicaud L, Rigoulet M (eds) Academic Press. - »Bioblast link«


Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png
c, d Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - »Bioblast link«


Gero 2018 IntechOpen CORRECTION.png
e Gero D (2023) Hyperglycemia-induced endothelial dysfunction. IntechOpen Chapter 8. - »Bioblast link«


Onukwufor 2022 Antioxidants (Basel) CORRECTION.png
f Onukwufor JO, Dirksen RT, Wojtovich AP (2022) Iron dysregulation in mitochondrial dysfunction and Alzheimer's disease. Antioxidants (Basel) 11:692. - »Bioblast link«


Shirakawa 2023 Sci Rep CORRECTION.png
g Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Sullivan 2014 Cell Cycle CORRECTION.png
h Sullivan LB, Chandel NS (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle 13:347-8. - »Bioblast link«


Valle-Mendiola 2020 Cancers (Basel) CORRECTION.png
i Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: The roles of STAT3 and STAT5 in the regulation of metabolism-related genes. Cancers (Basel) 12:124. - »Bioblast link«


Supplement 6. FADH2 or FADH as substrate of CII and FADH, FADH+, or FAD+ as product

Figure S6. Complex II ambiguities: FADH2 as substrate of CII and FADH or FADH+ as product. Sequence of publications from 2001 to 2023 according to (4) to (9).
Cadonic 2016 Mol Neurobiol CORRECTION.png
a Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078-90. - »Bioblast link«


Kezic 2016 Oxid Med Cell Longev CORRECTION.png
b Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Longev 2016:2950503. - »Bioblast link«


Li 2013 J Hematol Oncol CORRECTION.png
c Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19. - »Bioblast link«


Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png
ρ Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. J Biomed Res Environ Sci 1:105-13. - »Bioblast link«


Yang 2020 Transl Neurodegener CORRECTION.png
d Yang L, Youngblood H, Wu C, Zhang Q (2020) Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 9:19. - »Bioblast link«


Torres 2017 Cell Metab CORRECTION.png
e Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2018) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab 27:167-79. - »Bioblast link«


Johnson 2013 Eukaryot Cell CORRECTION.png
f Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776-93. - »Bioblast link«



Middleton 2021 Therap Adv CORRECTION.png
g Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394. - »Bioblast link«


Puntel 2013 Toxicol In Vitro CORRECTION.png
h Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 27:59-70. - »Bioblast link«


Xing 2022 Atlantis Press CORRECTION.png
i Xing Yunxie (2022) Is genome instability a significant cause of aging? A review. Atlantis Press. - »Bioblast link«



Supplement 7. FADH2 or FADH as substrate of CII in websites

Figure S7. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H (g), FADH2 → FAD+2H+ (a’, c, h-n), and FADH2 → FAD (a, b, d-f, o-θ) should be corrected to FADH2 → FAD (Eq. 3b). NADH → NAD+ is frequently written in graphs without showing the H+ on the left side of the arrow, except for (p-r). NADH → NAD++H+ (a-g, m), NADH → NAD++2H+ (h-l), NADH+H+ → NAD++2H+ (j, k), and NADH → NAD (ι) should be corrected to NADH+H+ → NAD+ (Eq. 3a). (Retrieved 2023-03-21 to 2023-05-04).
OpenStax Biology.png
(a)
Website 1 (a,b): OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.11
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 1
Website 7 (a): LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 8 (a): - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
(a’)
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 10 (a’,b,v): Saylor Academy
Expii OpenStax CORRECTION.png
(b)
Website 1 (a,b): OpenStax Biology - Fig. 7.12
Website 2 (a,b): Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19c
Website 3 (a,b): Pharmaguideline
Website 4 (a,b): Texas Gateway - Figure 7.13
Website 5 (a,b): - CUNY
Website 6 (a,b): lumen Biology for Majors I - Fig. 3
Website 9 (a’,b,v): Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 10 (a’,b,v): Saylor Academy
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Biologydictionary.net CORRECTION.png
(c)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 13 (c): wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 14 (c): biologydictionary.net 2018-08-21
Website 15 (c): Quora
Website 16 (c): TeachMePhysiology - Fig. 1. 2023-03-13
Website 17 (c): toppr
Labxchange CORRECTION.png
(d)
Website 18 (d): Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Jack Westin CORRECTION.png
(e)
Website 19 (e): Jack Westin MCAT Courses
Videodelivery CORRECTION.png
(f)
Website 20 (f): videodelivery
SparkNotes CORRECTION.png
(g)
Website 21 (g): - SparkNotes
Researchtweet CORRECTION.png
(h)
Website 22 (h,t): researchtweet
Website 23 (h): Microbe Notes
FlexBooks 2 0 CORRECTION.png
(i)
Website 24 (i): FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Labster Theory CORRECTION.png
(j)
Website 25 (j): Labster Theory
Nau.edu CORRECTION.png
(k)
Website 26 (k): nau.edu
ScienceFacts CORRECTION.png
(l)
Website 27 (l): ScienceFacts
Ck12 CORRECTION.png
(m)
Website 28 (m): cK-12
Wikimedia ETC CORRECTION.png
(n)
Website 11 (b,c,n,w,β): expii - Image source: By CNX OpenStax
Website 29 (n): Wikimedia
Creative-biolabs CORRECTION.png
(o)
Website 30 (o): creative-biolabs
Vector Mine CORRECTION.png
(p)
Website 31 (p): dreamstime
Website 32 (p): VectorMine
YouTube Dirty Medicine Biochemistry CORRECTION.png
(q)
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
DBriers CORRECTION.png
(r)
Website 34 (r): DBriers
SNC1D CORRECTION.png
(s)
Website 35 (s): SNC1D - BIOLOGY LESSON PLAN BLOG
ThoughtCo-Getty Images CORRECTION.png
(t)
Website 12 (c,t): ThoughtCo - extender01 / iStock / Getty Images Plus
Website 22 (h,t): researchtweet
Website 36 (t): dreamstime
Hyperphysics CORRECTION.png
(u)
Website 37 (u): hyperphysics
Khan Academy CORRECTION.png
(v)
Website 9 (a’,b,v): Khan Academy
Website 10 (a’,b,v): Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
(w)
Website 11 (b,c,n,w,β): expii - Whitney, Rolfes 2002
UrbanPro CORRECTION.png
(x)
Website 38 (x): UrbanPro
Quizlet CORRECTION.png
(y)
Website 39 (y): Quizlet
Unm.edu CORRECTION.png
(z)
Website 40 (z): unm.edu
YouTube sciencemusicvideos CORRECTION.png
(α)
Website 41 (α): YouTube sciencemusicvideos - Uploaded 2014-08-19
Expii-Gabi Slizewska CORRECTION.png
(β)
Website 11 (b,c,n,w,β): expii expii - Image source: By Gabi Slizewska
BiochemDen CORRECTION.png
(γ)
Website 42 (γ): BiochemDen.com
Hopes CORRECTION.png
(δ)
Website 43 (δ): hopes, Huntington’s outreach project for education, at Stanford
Studocu CORRECTION.png
(ε)
Website 44 (ε): [ https://www.studocu.com/en-gb/document/university-college-london/mammalian-physiology/electron-transport-chain/38063777 studocu, University College London]
ScienceDirect CORRECTION.png
(ζ)
Website 45 (ζ): ScienceDirect
BBC BITESIZE CORRECTION.png
(η)
Website 46 (η): BBC BITESIZE cK-12
Freepik CORRECTION.png
(θ)
Website 47 (θ): freepik
LibreTexts Chemistry CORRECTION.png
(ι)
Website 48 (ι): - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3


Supplement 8. Weblinks on FAO and CII

From CGpDH and other pathways to FADH2 to CII?

Blanco 2017 Academic Press CORRECTION.png /// Willson 2022 Blood CORRECTION.png /// Rai 2022 G3 (Bethesda) CORRECTION.png /// Koopman 2016 Nat Protoc CORRECTION.png

Comment (Cardoso Luiza, Gnaiger Erich, 2023-08-06):

Fig. 9.19 from Blanco, Blanco (2017), Fig. 1 from Willson et al (2022), and Fig. 1 from Rai et al (2022) show FADH2 (1) to be formed in the mitochondrial matrix from GPDH, GPD2, or GPO1 (all indicating CGpDH) and from the TCA cycle (Fig. 1 Rai et al (2022)), then (2) feeding electrons further 'To respiratory chain', the 'ETC', or 'Electron Transport Chain' (ETS). Combined with FADH2 shown (1) to be formed in the mt-matrix from the TCA cycle and (2) feeding into CII (Fig. 1 from Koopman et al (2016); among >120 examples discussed as CII-ambiguities), one may arrive at the erroneous conclusion on a direct role of CII in the oxidation of glycerophosphate, analogous to false representations of CII involved in fatty acid oxidation.

Cogliati 2021 Biochem Soc Trans CORRECTION.png
xx Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49:2655-68. - »Bioblast link«


LaMoia 2022 Proc Natl Acad Sci U S A CORRECTION.png
xx LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 119:e2122287119. - »Bioblast link«


Mosegaard 2020 Int J Mol Sci CORRECTION.png
xx Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21:3847. - »Bioblast link«



Addition to Figure 5: FAO and CII ambiguitiy

Balasubramaniam 2020 J Transl Genet Genom CORRECTION.png
xx Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function. J Transl Genet Genom 4:285-306. - »Bioblast link«


Bertero 2018 Nat Rev Cardiol CORRECTION.png
xx Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457-70. - »Bioblast link«


Bugarski 2018 Am J Physiol Renal Physiol CORRECTION.png
xx Bugarski M, Martins JR, Haenni D, Hall AM (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 315:F1613-25. - »Bioblast link«


Cortassa 2019 Front Physiol CORRECTION.png
xx Cortassa S, Aon MA, Sollott SJ (2019) Control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks. A systems biology analysis. Front Physiol 10:201. - »Bioblast link«


DiMauro 2003 N Engl J Med CORRECTION.png
xx DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656-68. - »Bioblast link«


Esparza-Molto 2020 Antioxid Redox Signal CORRECTION.png
xx Esparza-Moltó PB, Cuezva JM (2020) Reprogramming oxidative phosphorylation in cancer: a role for RNA-binding proteins. Antioxid Redox Signal 33:927-45. - »Bioblast link«


Frangos 2023 J Biol Chem CORRECTION.png
xx Frangos SM, DesOrmeaux GJ, Holloway GP (2023) Acidosis attenuates CPT-I supported bioenergetics as a potential mechanism limiting lipid oxidation. J Biol Chem 299:105079. - »Bioblast link«


Hinder 2019 Sci Rep CORRECTION.png
xx Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC 3rd, Pennathur S, Feldman EL (2019) Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 9:881. - »Bioblast link«


Huss 2005 J Clin Invest CORRECTION.png
xx Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547-55. - »Bioblast link«


Kikusato 2016 Proc Jpn Soc Anim Nutr Metab CORRECTION.png
xx Kikusato M, Furukawa K, Kamizono T, Hakamata Y, Toyomizu M (2016) Roles of mitochondrial oxidative phosphorylation and reactive oxygen species generation in the metabolic modification of avian skeletal muscle. Proc Jpn Soc Anim Nutr Metab 60:57-68. - »Bioblast link«


Kraegen 2008 Proc Natl Acad Sci U S A CORRECTION.png
xx Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105:7627-8. - »Bioblast link«


Loussouarn 2021 Front Immunol CORRECTION.png
xx Loussouarn C, Pers YM, Bony C, Jorgensen C, Noël D (2021) Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front Immunol 12:623973. - »Bioblast link«


Ma 2018 Cancer Lett CORRECTION.png
xx Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92-100. - »Bioblast link«


Ma 2020 Sci Rep CORRECTION.png
xx Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X (2020) Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 10:1450. - »Bioblast link«


Massart 2013 Curr Pathobiol Rep CORRECTION.png
xx Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B (2013) Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep 1:147–57. - »Bioblast link«


Merritt 2020 Rev Endocr Metab Disord CORRECTION.png
xx Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B (2020) Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord 21:479-93. - »Bioblast link«


Murray 2009 Genome Med CORRECTION.png
xx Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117. - »Bioblast link«


Picard 2012 Am J Respir Crit Care Med CORRECTION.png
xx Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Des Rosiers C, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140-9. - »Bioblast link«


Picard 2018 Biol Psychiatry CORRECTION.png
xx Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. Psychosom Med 80:141-53. - »Bioblast link«
xx Copied by: Picard M, Prather AA, Puterman E, Cuillerier A, Coccia M, Aschbacher K, Burelle Y, Epel ES (2018) A mitochondrial health index sensitive to mood and caregiving stress. Biol Psychiatry 84:9-17. - »Bioblast link«
xx Copied by: Karan KR, Trumpff C, McGill MA, Thomas JE, Sturm G, Lauriola V, Sloan RP, Rohleder N, Kaufman BA, Marsland AL, Picard M (2020) Mitochondrial respiratory capacity modulates LPS-induced inflammatory signatures in human blood. Brain Behav Immun Health 5:100080. - »Bioblast link«
xx Copied by: Bindra S, McGill MA, Triplett MK, Tyagi A, Thaker PH, Dahmoush L, Goodheart MJ, Ogden RT, Owusu-Ansah E, R Karan K, Cole S, Sood AK, Lutgendorf SK, Picard M (2021) Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors. Sci Rep 11:11595. - »Bioblast link«
xx Copied by: Rausser S, Trumpff C, McGill MA, Junker A, Wang W, Ho SH, Mitchell A, Karan KR, Monk C, Segerstrom SC, Reed RG, Picard M (2021) Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. Elife 10:e70899. - »Bioblast link«


Prasun 2020 J Diabetes Metab Disord CORRECTION.png
xx Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19:2017-22. - »Bioblast link«


Rinaldo 2002 Annu Rev Physiol CORRECTION.png
xx Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477-502. - »Bioblast link«
xx Bennett MJ, Sheng F, Saada A (2020) Biochemical assays of TCA cycle and β-oxidation metabolites. Methods Cell Biol 155:83-120. - »Bioblast link«


Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«


Vockley 2021 Cambridge Univ Press CORRECTION.png
xx Vockley J (2021) Inborn errors of fatty acid oxidation. In: Suchy FS, Sokol RJ, Balistreri WF (eds) Liver disease in children. Cambridge Univ Press:611-27. https://doi.org/10.1017/9781108918978.034 - »Bioblast link«


Zhang 2021 Cells CORRECTION.png
xx Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW Jr, Dash RK (2021) Substrate- and calcium-dependent differential regulation of mitochondrial oxidative phosphorylation and energy production in the heart and kidney. Cells 11:131. - »Bioblast link«



CHM333 LECTURES CORRECTION.png
xx CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna



(retrieved 2023-03-21 to 2023-05-02)
Website 49: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Website 50: The Medical Biochemistry Page: ‘In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttle’ (Figure 8d).
Website 51: CHM333 LECTURES 37 & 38: 4/27 – 29/13 SPRING 2013 Professor Christine Hrycyna: Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Supplement 9. CII as a proton pump

Latest additions
Dumollard 2007 Development CORRECTION.png
xx Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. Development 134:455-65. - »Bioblast link«


Figure S9. Complex II as a proton pump
Cronshaw 2019 Photobiomodul Photomed Laser Surg CORRECTION.png
a Cronshaw M, Parker S, Arany P (2019) Feeling the heat: evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37:517-26. - »Bioblast link«


Jian 2020 Cell Metab CORRECTION.png
b Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab 31:892-908. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Shirakawa 2023 Sci Rep CORRECTION.png
c Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Expii-Gabi Slizewska CORRECTION.png
d: expii expii - Image source: By Gabi Slizewska: ‘FADH2 from glycolysis and Krebs cycle is oxidized to FAD by Complex II. It also releases H+ ions into the intermembrane space and passes off electrons’ (retrieved 2023-05-04).
BioNinja 1 CORRECTION.png
BioNinja 2 CORRECTION.png
e,f: BioNinja (retrieved 2023-05-04).



Questions.jpg


Click to expand or collaps
Bioblast links: Substrates and cofactors - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
Substrate
» Substrate
» Product
» Substrates as electron donors
» Cellular substrates
» MitoPedia: Substrates and metabolites
» Substrate-uncoupler-inhibitor titration
Cofactor
» Cofactor
» Coenzyme, cosubstrate
» Nicotinamide adenine dinucleotide
» Coenzyme Q2
» Prosthetic group
» Flavin adenine dinucleotide
Referennces
» Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v6. https://doi.org/10.26124/mitofit:2023-0003.v6


Labels:



Enzyme: Complex II;succinate dehydrogenase 



Ambiguity crisis, FAT4BRAIN, Publication:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.