Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Lamberti 2011 Plant Physiol"

From Bioblast
(Created page with "{{Publication |title=Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S (2011) The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arab...")
 
Line 1: Line 1:
{{Publication
{{Publication
|title=Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S (2011) The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol 157(1):70-85.  
|title=Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S (2011) The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol 157(1):70-85.
|info=http://www.ncbi.nlm.nih.gov/pubmed/21799034
|info=http://www.ncbi.nlm.nih.gov/pubmed/21799034
|authors=Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S
|authors=Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S
Line 7: Line 7:
|abstract=In Arabidopsis (Arabidopsis thaliana), transit peptides for chloroplast-destined preproteins can be phosphorylated by the protein kinases STY8, STY17, and STY46. In this study, we have investigated the in vitro properties of these plant-specific kinases. Characterization of the mechanistic functioning of STY8 led to the identification of an essential threonine in the activation segment, which is phosphorylated by an intramolecular mechanism. STY8 is inhibited by specific tyrosine kinase inhibitors, although it lacked the ability to phosphorylate tyrosine residues in vitro. In vivo analysis of sty8, sty17, and sty46 Arabidopsis knockout/knockdown mutants revealed a distinct function of the three kinases in the greening process and in the efficient differentiation of chloroplasts. Mutant plants displayed not only a delayed accumulation of chlorophyll but also a reduction of nucleus-encoded chloroplast proteins and a retarded establishment of photosynthetic capacity during the first 6 h of deetiolation, supporting a role of cytosolic STY kinases in chloroplast differentiation
|abstract=In Arabidopsis (Arabidopsis thaliana), transit peptides for chloroplast-destined preproteins can be phosphorylated by the protein kinases STY8, STY17, and STY46. In this study, we have investigated the in vitro properties of these plant-specific kinases. Characterization of the mechanistic functioning of STY8 led to the identification of an essential threonine in the activation segment, which is phosphorylated by an intramolecular mechanism. STY8 is inhibited by specific tyrosine kinase inhibitors, although it lacked the ability to phosphorylate tyrosine residues in vitro. In vivo analysis of sty8, sty17, and sty46 Arabidopsis knockout/knockdown mutants revealed a distinct function of the three kinases in the greening process and in the efficient differentiation of chloroplasts. Mutant plants displayed not only a delayed accumulation of chlorophyll but also a reduction of nucleus-encoded chloroplast proteins and a retarded establishment of photosynthetic capacity during the first 6 h of deetiolation, supporting a role of cytosolic STY kinases in chloroplast differentiation
}}
}}
{{Labeling}}
{{Labeling
|taxonomic group=Plants
|preparations=Chloroplasts
}}

Revision as of 16:36, 12 January 2016

Publications in the MiPMap
Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S (2011) The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol 157(1):70-85.

» http://www.ncbi.nlm.nih.gov/pubmed/21799034

Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S (2011) Plant Physiol

Abstract: In Arabidopsis (Arabidopsis thaliana), transit peptides for chloroplast-destined preproteins can be phosphorylated by the protein kinases STY8, STY17, and STY46. In this study, we have investigated the in vitro properties of these plant-specific kinases. Characterization of the mechanistic functioning of STY8 led to the identification of an essential threonine in the activation segment, which is phosphorylated by an intramolecular mechanism. STY8 is inhibited by specific tyrosine kinase inhibitors, although it lacked the ability to phosphorylate tyrosine residues in vitro. In vivo analysis of sty8, sty17, and sty46 Arabidopsis knockout/knockdown mutants revealed a distinct function of the three kinases in the greening process and in the efficient differentiation of chloroplasts. Mutant plants displayed not only a delayed accumulation of chlorophyll but also a reduction of nucleus-encoded chloroplast proteins and a retarded establishment of photosynthetic capacity during the first 6 h of deetiolation, supporting a role of cytosolic STY kinases in chloroplast differentiation


Labels:



Preparation: Chloroplasts