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Abstract 
 
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from 
the tricarboxylic acid cycle to the mitochondrial electron transfer system creates 
ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound 
enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the 
mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The 
succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the 
covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic 
acid cycle. However, several graphical representations of the electron transfer system 
depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This 
leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid 
oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation 
channel electrons to the Q-junction but not through CII. The ambiguities surrounding 
Complex II in the literature and educational resources call for quality control, to secure 
scientific standards in current communications of bioenergetics, and ultimately support 
adequate clinical applications. This review aims to raise awareness of the inherent 
ambiguity crisis, complementing efforts to address the well-acknowledged issues of 
credibility and reproducibility. 
 
Introduction 

 Current studies on cellular and mitochondrial bioenergetics sparked a new 
interest in the tricarboxylic acid (TCA) cycle, also known as the citric acid cycle or Krebs 
cycle (1-4). TCA cycle metabolites are oxidized while reducing NAD+ to NADH+H+ in 
the forward cycle, or are transported into the cytosol mainly by passive diffusion 
dependent on concentration differences across the mitochondrial membranes (5, 6). 
Respiratory Complex II (CII, succinate dehydrogenase SDH; succinate-ubiquinone 
oxidoreductase SQR; EC 1.3.5.1) ― discovered in 1909 (7, 8) ― has a unique position 
in both the TCA cycle and the mitochondrial membrane-bound electron transfer system 
(membrane-ETS). All genes for CII are nuclear-encoded, with exceptions in some red 
algae and land plants (9, 10). SQRs favour oxidation of succinate and reduction of 
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quinone in the canonical forward direction of the TCA cycle (11). Operating in the 
reverse direction, quinol:fumarate reductases (QFRs, fumarate reductases) reduce 
fumarate and oxidize quinol (12, 13). The reverse TCA cycle has gained interest in 
studies ranging from metabolism in anaerobic animals (14, 15), thermodynamic 
efficiency of anaerobic and aerobic ATP production (16), reverse electron transfer and 
production of reactive oxygen species (17-19), hypoxia and ischemia-reperfusion injury 
(20), to evolution of metabolic pathways (21, 22). In cancer tissues CII plays a key role 
in metabolic remodeling (23, 24). Beyond its role in electron transfer in the TCA cycle 
and the membrane-ETS, CII and succinate serve multiple functions in metabolic 
signaling (25-27). CII is thus a target of current pharmacological developments (28, 
29). 
 

 The pyridine derivative NAD+ is reduced to NADH+H+ during oxidation of 
pyruvate and through redox reactions catalyzed by TCA cycle dehydrogenases (DH) 
including isocitrate DH, oxoglutarate (α-ketoglutarate) DH, and malate DH. In turn, 
NADH+H+ are the substrates in the oxidation reaction catalyzed by Complex I (CI; 
NADH:ubiquinone oxidoreductase; EC 1.6.5.3) which is linked to reduction of the 
prosthetic group flavin mononucleotide FMN to FMNH2 and regeneration of NAD+. 
Likewise, the prosthetic group flavin adenine dinucleotide FAD is reduced to FADH2 
during oxidation of succinate by CII (succinate DH). Confusion emerges, however, 
when NADH and FADH2 are considered as the reduced substrates feeding electrons 
from the TCA cycle into the ‘respiratory chain’ ― rather than NADH and succinate. 
This ‘Complex II ambiguity’ has deeply penetrated the scientific literature on 
bioenergetics without sufficient quality control. Therefore, a critical literature survey is 
needed to ensure scientific standards in communications on bioenergetics. By drawing 
attention to widespread CII ambiguities, subsequent erroneous portrayal and 
misinformation are revealed on the position of CII in pathways of energy metabolism, 
particularly in graphical representations of the mitochondrial electron transfer system. 
 

 While ambiguity is linked to relevant issues of reproducibility, it extends to the 
communications space of terminological and graphical representations of concepts 
(30). Type 1 ambiguities are the inevitable consequence of conceptual evolution, in the 
process of which ambiguities are replaced by experimentally and theoretically 
supported paradigm shifts to clear-cut theorems. In contrast, type 2 ambiguities are 
traced in publications that reflect merely a disregard and ignorance of established 
concepts without any attempt to justify the inherent deviations from high-quality 
science. There are many shades of grey between these types of ambiguity. The 
Cambridge Dictionary defines ambiguity as ‘the fact of something having more than 
one possible meaning and therefore possibly causing confusion’ 
https://dictionary.cambridge.org/dictionary/english/ambiguity (retrieved 2023-09-23). 
This is opposite to ‘productive ambiguity’ (30) used in the sense of various isomorphic 
or complementary representations, describing a concept from different points of view. 
The word relates etymologically to ‘double meaning’ and ‘equivocalness’, from ambi 
(around, on both sides). 
 

Ambiguities regarding Complex II (CII) emerge on several fronts. First, they arise 
when portraying FADH2 within the mitochondrial matrix as both a product of succinate 
dehydrogenase (SDH) and a substrate of CII. Although misconstrued, this may be seen 
as electron transfer from FADH2 in the SDHA subunit of CII to ubiquinone. Second, 
numerous publications introduce ambiguity through the presentation of incorrect 
figures, depicting FADH2 instead of succinate as the substrate for CII. Third, this 
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confusion extends to the representation of the reduced flavin adenine dinucleotide 
(FADH2) in various misconstrued forms, such as FADH or FADH+, or the oxidized form 
FAD as FAD+. Fourth, when illustrating the oxidation of FADH2, several figures show 
reactions like FADH2 → FAD + H+ or FADH2 → FAD + 2H+. These hydrogen ions H+ 
introduce a spectrum of uncertainties and blur the line between ambiguous 
interpretations and indisputable misinformation. Aiming at an open frame for 
discussion, the term ambiguity is used here in a collegial manner rather than a 
punctilious one. Nevertheless, these ambiguities have been a source of confusion 
even among established authors of specialized research reports, highly cited reviews, 
and editorials in leading journals. CII ambiguities have led to erroneous conclusions, 
as will be discussed below. 
 
Electron flow through CI and CII to the coenzyme Q junction 
 
 The reduced flavin groups FMNH2 of flavin mononucleotide and FADH2 of flavin 
adenine dinucleotide are at functionally comparable levels in the electron transfer 
through CI and CII, respectively (Figure 1a,b). FMNH2 and FADH2 are reoxidized 
downstream in CI and CII, respectively, by electron transfer or more explicitly by 
transfer of 2{H++e-} to the ETS-reactive coenzyme Q (Q) (31), reducing ubiquinone 
(UQ) to ubiquinol (UQH2). The convergent architecture of the electron transfer system 
(ETS; in contrast to a linear electron transfer chain ETC; a chain's length used to be a 
linear measure) with multiple branches feeding into the Q-junction is emphasized in 
Figures 1c,d (6, 32). Comparable to CII, several respiratory Complexes are localized 
in the mitochondrial inner membrane (mtIM) which catalyze electron transfer 
converging at the Q-junction, including electron transferring flavoprotein DH Complex 
in fatty acid oxidation, glycerophosphate DH Complex, sulfide-ubiquinone 
oxidoreductase, choline DH, dihydro-orotate DH, and proline DH (3, 6, 32-34). Electron 
transfer and corresponding capacities of oxidative phosphorylation (OXPHOS) are 
classically studied in mitochondrial preparations as oxygen consumption supported by 
various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, 
malate, succinate, and others (6). Therefore, the matrix component of the ETS (matrix-
ETS) is distinguished from the ETS bound to the mtIM (membrane-ETS; Figure 1c) (2). 
 

 In most flavin-linked dehydrogenases the flavin adenine nucleotide is a tightly 
bound prosthetic group. In CII, it is even covalently and thus permanently bound to the 
enzyme during the catalytic cycle when the redox state is regenerated in each 
enzymatic turnover, as documented in early reports (35) and summarized in classical 
textbooks (36, 37). Structural studies of CII have expanded our knowledge on the 
mechanism of enzyme assembly (13), enzyme structure (38-40), kinetic regulation of 
CII activity (41, 42), and associated pathologies (3, 26-29). 
 

 H+-linked two-electron transfer from succinate to flavin adenine dinucleotide 
reduces the oxidized prosthetic group FAD to FADH2 with formation of fumarate. This 
H+-linked electron transfer through CII is not coupled to H+ translocation across the 
mtIM. Hence, CII is not a H+ pump in contrast to the respiratory Complexes CI, CIII and 
CIV through which electron transfer – more appropriately 2{H++e-} transfer (Table 1) – 
drives and maintains the protonmotive force.  
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Figure 1. Complex II (SDH) 
integrates H+-linked electron 
transfer in the TCA cycle (matrix-
ETS) and the electron transfer 
system (membrane-ETS) of the mt-
inner membrane (mtIM). (a) 
NADH+H+ and (b) Succinate are 
substrates of 2{H++e-} transfer to the 
prosthetic groups FMN and FAD as 
the corresponding electron acceptors 
in CI and CII, respectively. (c) 
Symbolic representation of ETS 
pathway architecture. Electron flow 
converges at the N-junction, 
NAD++2{H++e-} → NADH+H+, and 
from NADH+H+ and succinate S at 
the Q-junction, UQ+2{H++e-} → 
UQH2. CIII passes electrons to 
cytochrome c and in CIV to molecular 
O2, 2{H++e-}+0.5 O2 ⇢ H2O. (d) 
NADH and NAD+ cycle between 
different matrix-dehydrogenases and 
CI, whereas FAD and FADH2 remain 
permanently bound within the same 
CII-enzyme molecule during the 
catalytic cycle. Succinate and 

fumarate indicate the chemical entities irrespective of ionization, whereas charges are 
shown in NADH (uncharged), NAD+, and H+. Joint pairs of half-circular arrows 
distinguish the chemical reaction of electron transfer 2{H++e} to CI and CII from 
vectorial H+ translocation across the mtIM (H+

neg → H+
pos). CI, CIII, and CIV pump 

hydrogen ions from the negatively (neg; yellow, mt-matrix) to the positively charged 
compartment (pos; grey, intermembrane space). I Iconic representation of SDH 
subunits. SDHA catalyzes the oxidation succinate → fumarate + 2{H++e-} and reduction 
FAD+2{H++e-} → FADH2 in the soluble domain of CII. The iron–sulfur protein SDHB 
transfers electrons through Fe-S clusters to the mtIM domain where ubiquinone UQ is 
reduced to ubiquinol UQH2 in SDHC and SDHD.  
 
Table 1. Three distinct types of transformation with hydrogen ions (hydrons) H+. 
 

Transformation Equation Type 

1. acid-base 
equilibrium 

H3O+ ↔ H2O + H+ (a) 
H2CO3 ↔ HCO3

- + H+  (b) 
scalar, chemical, 

fast 

2a. H+-linked electron 
transfer, oxidation 

Malate2- ⟶ Oxaloacetate2- + 2{H++e−} (c) 
Succinate2- ⟶ Fumarate2- + 2{H++e−} (d) 

scalar, chemical, 
slow 

2b. H+-linked electron 
transfer, reduction 

2{H++e−} + NAD+ ⟶ NADH+H+ (e) 

2{H++e−} + E-FAD ⟶ E-FADH2 (f) 

scalar, chemical, 
slow 

3. transport, 
translocation 

pumping: H+
neg ⟶ H+

pos (g) 
diffusion: H+

pos ⟶ H+
neg (h) 

vectorial, 
 compartmental, 
transmembrane 
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 The reversible oxidoreduction of dicarboxylate (succinate/fumarate) is catalyzed 
in the soluble domain of CII extending from the mtIM into the mt-matrix. Succinate 
donates 2{H++e−} to FAD bound to the subunit SDHA which contains the catalytically 
active dicarboxylate binding site. The oxidized yellow (450 nm) form FAD functions as 
the hydrogen acceptor from succinate to the reduced internal product FADH2 while 
fumarate is formed as the oxidized external product in the TCA cycle. FADH2 relays 
electrons further through a series of iron-sulfur redox centers in SDHB to reduce UQ 
to UQH2 in the membrane domain harboring SDHC and SDHD (9-13, 39) (Figure 1e). 
 

 Simple arrows (Figure 1a-c) or pairs of rounded arrows ‒ an external arrow 
touching the enzyme and an internal arrow within the enzyme ‒ indicate chemical 
reactions of H+-linked electron transfer (Figure 1d,e). The term H+-coupled electron 
transfer (43) is replaced by H+-linked electron transfer, to avoid confusion with coupled 
H+ translocation. Caution is warranted to distinguish three types of transformation with 
hydrogen ions, for which IUPAC suggests the term ‘hydrons’ (44): (i) Acid-base 
reactions equilibrate fast without catalyst. (ii) ‘The terms reducing equivalents or 
electron equivalents are used to refer to electrons and/or hydrogen atoms participating 
in oxidoreductions’ (36). Redox transfer of hydrogen atoms is slow and depends on a 
catalyst. The symbol 2{H++e−} is introduced to indicate H+-linked electron transfer of 
two hydrons and two electrons in a redox reaction. (iii) Vectorial H+ transport is either 
active with translocation through H+ pumps or passive as diffusion driven by the 
electrochemical pressure difference across cellular compartments (6) (Table 1).  
 
Sources and consequences of Complex II ambiguities 
 

 ‘No representation is ever perfectly expressive, for if it were it would not be a 
representation but the thing itself’ (30).  
 

 Ambiguities emerge if the representation of a concept is vague to an extent that 
allows for equivocal interpretations. As a consequence, even a basically clear concept 
(Figure 1) may be communicated as a divergence from an established ‘truth’. The 
comparison between NADH linked to CI and FADH2 (instead of succinate) linked to CII 
leads us astray, as illustrated by the following textbook quotes (45) which require 
correction (Figure 2). 
 

 (1) 'Electrons from NADH enter the electron transport chain in complex I, .. A distinct 
protein complex (complex II), which consists of four polypeptides, receives electrons 
from the citric acid cycle intermediate, succinate’ (Figure 2b; ref. 45). ‘These electrons 
are transferred to FADH2, rather than to NADH, and then to coenzyme Q.' Note the 
suggestive comparison of FADH2 and NADH. 
 

 (2) 'In contrast to the transfer of electrons from NADH to coenzyme Q at complex I, 
the transfer of electrons from FADH2 to coenzyme Q is not associated with a significant 
decrease in free energy and, therefore, is not coupled to ATP synthesis.' Note that CI 
catalyzes electron transfer from NADH to coenzyme Q. In contrast, electron transfer 
from FADH2 to coenzyme Q is downstream of succinate oxidation by CII. Thus instead 
of the Gibbs force ('decrease in free energy') in FADH2→Q, the total Gibbs force (6) in 
S→Q must be accounted for. In contrast to the extensive quantity Gibbs energy [J], 
Gibbs force [J·mol-1] is an intensive quantity expressed as the partial derivative of 
Gibbs energy [J] per advancement of a reaction [mol] (6, 46). (In parentheses: Redox-
driven proton translocation must be distinguished from phosphorylation of ADP driven 
by the protonmotive force). 
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Figure 2. Electron transfer to CI and CII. Zoom into figures of ref. 45. (a) H+ (marked) 
is shown to be consumed in H+-linked electron transfer instead of being produced (cf. 
Figure 1a). (b) Marked quote inserted from the legend to Fig. 10.9 of ref. 45. 
 
 (3) '.. electrons from succinate enter the electron transport chain via FADH2 in 
complex II.' Note that CII receives electrons from succinate via FAD. The ambiguity is 
caused by a lack of unequivocal definition of the electron transfer system (‘electron 
transport chain’). Two contrasting definitions are implied of the 'electron transport 
chain' or ETS. (a) CII is part of the ETS. Hence electrons enter the ETS in the succinate 
branch from succinate but not from FADH2 – from the matrix-ETS to the membrane-
ETS (Figure 1c,d). (b) If electrons enter the 'electron transport chain via FADH2 in 
complex II', then subunit SDHA would be upstream and hence not part of the ETS (to 
which conclusion obviously nobody would agree). Electrons enter CII and thus the 
membrane-ETS from succinate (Figure 1) but not from FADH2 as the ‘product’ of 
succinate dehydrogenase in the TCA cycle, as erroneously shown in Figures 3a,b. 
 
The FADH2 - FAD confusion in the succinate-pathway 
 

‘Like drops of water on stone, one drop will do no harm, but over time, grooves are 
cut deep‘ (47). 
 

 The narrative that the reduced cofactors NADH and FADH2 feed electrons from 
the TCA cycle into the mitochondrial electron transfer system causes confusion. As a 
consequence, the prosthetic group FADH2 appears erroneously as the substrate of CII 
in the ETS linked to succinate oxidation. This error is widely propagated in publications 
found from 2001 to 2023 (4, 23, 48-356) and numerous educational websites (357). 
The following examples illustrate the transition from ambiguity to erroneous 
representation. 
 

(1) Ambiguities appear in graphical representations, where FADH2 is the product of 
SDH and the substrate of CII – synonymous with SDH (explicit in Figures 3a,b; implicit 
in Figure 3c). 
 

(2) Ambiguity evolved to misconception in graphical representations (Figures 3d-f).  
 

(3) Instead of NADH+H+→NAD+ (Figure 1a) there appears NADH→NAD++H+ or 
+2H+ and by analogy FADH2→FAD+2H+ (Figures 3g,h). The analogy NADH→NAD+ is 
taken further to include a charge for FAD or even writing FADH+ (Figures 3i,j). 
Disturbing patterns are shown in various figures with analogous representations of 
oxidation of NADH and FADH2 (Table 2).  
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Figure 3. Complex II 
ambiguities. FADH2 depicted as 
(1) product and (2) substrate of 
Complex II by (a) (4), (b) (80), as 
in ref. 48-99, 104, 192, 193, 195, 
200, 202-207, 210-212, 214, 
216-221, 223, 226-228, 232, 
234, 237, 240,-242, 246, 272, 
281, 286, 292-296, 305-307, 
309, 312, 313, 315, 321, and 
331. NADH and NAD+ cycle 
between different types of 
enzymes (yellow circle), in 
contrast to the FAD/FADH2 cycle 
located within the same enzyme 
molecule (SDH and CII are 
synonyms). (c) From ambiguous 
NADH-FADH2 analogy (73) to (d) 
graphical misconception (58), as 
in ref. 100-241. NADH and 
FADH2 at the doors of CI and CII, 
respectively, shown by (e) an 
international team (169) and (f) 
an international consortium 
suggesting guidelines (199); 
FADH2 cannot enter – it functions 
always inside CII like FAD which 
receives electrons from the 
substrate succinate. (g) The 
redox reaction of the flavin 
adenine dinucleotide is copied 
from the nicotinamide adenine 
dinucleotide with unjustified 
indication of 2H+ formation in the 
mt-matrix, confusing in the 
context of the protonmotive 
force. The figure from ref. 265 is 
similar or identical to zooms into 
33 figures from ref. 49, 57, 70, 
72, 133, 154, 186, 245, 247, 250, 

252-256, 258, 263-265, 268, 270, 271, 273, 274, 276-281, 318, and 320. (h) The CII 
ambiguity in FADH2→FAD+2H+ (243-281) fires back at the CI-catalyzed reaction when 
NAD+ is shown like FAD as NAD without charge (246, 272). (i) The NADH→NAD+ 
analogy is taken to the level of copying a charge to FAD+ (289, as in 282-320) or (j) 
FADH+ (332, as in 333). (k) Exponential increase of publications with graphical 
Complex II ambiguities, 2001 to October 2023. Open symbol: the count of 46 
publications in 2023 was adjusted for the full year by a multiplication factor of 12/10. 
Asterisc: zero count in 2004 set at 0.1 for exponential fit. N=312 is the number of 
publications found with graphical CII ambiguities (Table 2). 
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Table 2. Misconceptions in graphical representations of electron entry into CI and CII. 
2{H++e-} is donated to CI in the oxidation NADH + H+ ⟶ NAD+ + 2{H++e-}, and to CII in the 

oxidation Succinate2- ⟶ Fumarate2- + 2{H++e-}. 
 

CI e-input errors Ref. CII e-input errors Ref. 
NADH ⟶ NAD+ + H+ 45,97,99  FADH2 ⟶ FAD 4,23,48-99a 
NADH ⟶ NAD 52,56b FADH2 ⟶ FAD 52,56b 

NAD ⟶ NADH 56c FAD ⟶ FADH2 56c 

NADH ⟶ NAD+ + H+ 106,122,156,157, 
163,172,181 

FADH2 ⟶ FAD 100-187d 

NADH ⟶ NAD 123,125,130,168, 
177,184 

   

NADH +H+ ⟶ NAD+ + 2H+ 149    

NADH ⟶ NAD+ + H+ 228,239 FADH2 ⟶ 188-241e 

NADH ⟶ NAD 221,228    

NADP  241    

NADH ⟶ NAD+ + H+ 242 FADH2 ⟶ FAD + H+ 242 

NADH ⟶ NAD+ + H+ 243,249,260-262, 
266,269,275 

FADH2 ⟶ FAD + 2H+ 243-281f 

NADH ⟶ NAD + H+ 244,246,272,279    
NADH ⟶ NAD+ + 2H+ 245,247,248,250-

259,263-265,267, 
268,270,271,274, 
276-281 

   

NADH ⟶ NAD + 2H+ 273    

NADH ⟶ NAD 287 FADH2 ⟶ FAD+ 282-311g 
NADH +H ⟶ NAD+ 308 FADH2 ⟶ FAD+ 308 

NADH ⟶ NAD + H+ 312 FADH2 ⟶ FAD+ +H+ 312 

NADH ⟶ NAD+ + H+ 313 FADH2 ⟶ FAD+ +H+ 313 
NADH ⟶ NAD+ + H+ 314,316,317,319 FADH2 ⟶ FAD+ +2H+ 314-320 

NADH ⟶ NAD+ + 2H+ 315,318,320 FADH2 ⟶ FAD+ +2H+  

   FADH2 ⟶ FAD2+ 321 

NADH + H+ ⟶ NADH 322 FADH2 ⟶ FADH 322-330 
NADH ⟶ NAD 327    

NADH ⟶ NAD+ + H+ 331 FADH2 ⟶ FADH +H+ 331 

   FADH2 ⟶ FADH+ 332,333h 

   FADH ⟶  334,335 
NADH ⟶ NAD + H+ 336,337 FADH ⟶ FAD 336,337 

   FADH ⟶ FAD+ 338-340 

NADH ⟶ NAD+ + H+ 341 FADH ⟶ FAD+ + H+ 341 
NADH ⟶ NAD+ + H+ 342 FADH ⟶ FAD+ + 2H+ 342 

   FADH+ ⟶ FAD 343 

   FAD ⟶ FADH2 344-346i 

   FAD+ ⟶ FADH2 347 
   FADH2 ⟶ FAD + 2H+ 348j 

   FADH2 ⟶ CI ⟶ CII 349 

   ETF ⟶ CII ⟶ CIII 350-356k 
NADH ⟶ NAD+ + H+ 242 CI ⟶ CII ⟶ CIII 129,166,171,176, 

183,224,242,340, 
349 

NAD+ + H+ ⟶ NADH 386l    
 

a FAD a substrate of SDH and FADH2 a substrate of CI (Figure 3a-c). 
b Oxidation by CI and CII of NADH and FADH2, respectively, from the TCA cycle. 
c Reduction by CI and CII of NAD (NAD+) and FAD from β-oxidation. 
d Figure 3d and e. 
e Figure 3f. 
f Figure 3g and h. 
g Figure 3i. 
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h Figure 3j. 
i Electron transfer into the Q-junction does not occur from a common FADH2 pool from CII and CGpDH, 

as Fig. 6 of ref. 346 suggests, but through functionally separate branches converging at the Q-junction. 
j Paradoxically, oxidation of FADH2 is linked to oxidation of succinate (S) with formation of FAD and 

fumarate (F) and 2H+; S + FADH2 ⟶ FAD + F + 2H+. 
k The pathway is either shown from β-oxidation to CII or explicitly from ETF to CII (Figure 5). 
l Fig. 7 of ref. 386 shows reduction of NAD+ by CI, where it should be oxidation of NADH. 

 

Figure 4. Convergent electron transfer into the NAD junction, ETF junction, and 
Q-junction indicated by convergent arrows, without showing the alignment of 
supercomplexes. Inter-membrane space (interM) indicated in grey and mt-matrix in 
yellow-orange. (a) Convergent FAD-linked electron transfer into the ETF junction as 
the first step in β-oxidation from very long- and long-chain acyl-CoA dehydrogenases 
(ACADS, membrane-bound), medium-, and short-chain ACADs including 
short/branched-ACAD (SBCAD) and Complex I assembly factor ACAD9; in branched-
chain amino acid oxidation from glutaryl-CoA DH (GCDH), SBCAD, isobutyryl-CoA DH 
(IBDH) and isovaleryl-CoA DH (IVDH); in choline metabolism from dimethylglycine DH 
(DMGDH) and sarcosine DH (SARDH); and from acyl-CoA DH family members 10 and 
11 (ACAD10, ACAD11) and D-2-hydroxyglutarate DH (D2HGDH). References 358, 
361, and 362. ETF is the redox shuttle feeding electrons into the membrane-bound 
electron transferring flavoprotein Complex (CETFDH on the matrix side of the mtIM) 
and further into Q. Steps two to four in β-oxidation of long- and medium-chain fatty 
acids are catalyzed by trifunctional protein (TFP, membrane-bound). Step three 
reduces NAD++H+ to NADH, feeding electrons into the NAD-cycle, catalyzed by TFP 
and short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). (b) N: N-pathway 
through Complex I (CI; see Fig. 1). F: F-pathway of fatty acid oxidation through the β-
oxidation cycle (β-ox) with ACADs binding noncovalently FAD; converging electron 
transfer through ETF to CETFDH, and dependence on the N-pathway. S: S-pathway 
through CII. Gp: Gp-pathway through mt-glycerophosphate DH Complex (CGpDH on 
the inter-membrane side of the mtIM) oxidizing glycerophosphate to dihydroxyacetone 
phosphate (DHAP) in the inter-membrane space. 
 

(4) Finally, error propagation from graphical representation (Figure 3) leads to 
misinformation in the text: 'SDH reduces FAD to FADH2, which donates its electrons 
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to complex II'; 'each complete turn of the TCA cycle generates three NADH and one 
FADH2 molecules, which donate their electrons to complex I and complex II, 
respectively'; 'complex I and complex II oxidize NADH and FADH2, respectively' (4).  
 

 Clarification is required (see page 48 in ref. 6) to counteract the accelerating 
propagation of a fundamental bioenergetic misunderstanding (Figure 3k). Electron 
transfer from succinate in the TCA cycle to the prosthetic group FAD is a redox 
reaction, where oxidation (ox) of succinate yields 2{H++e-} – two hydrons and two 
electrons – which are donated in the reduction (red) of FAD to FADH2 (Table 1), 
 

 ox: Succinate2-  ⟶  Fumarate2- + 2{H++e-}  (Eq. 1a) 

 red: 2{H++e-} + SDHA-FAD  ⟶  SDHA-FADH2 (Eq. 1b) 
 

The net redox reaction equation is 
 

 redox: Succinate2- + SDHA-FAD ⟶  SDHA-FADH2 + Fumarate2- (Eq. 1) 
 

Commonly the charges of succinate, fumarate (Eq. 1), and other metabolites are not 
shown explicitly to simplify graphical representations of metabolic pathways. But NAD+ 
(oxidized) must be distinguished from NAD (total NAD+ + NADH). In 2{H++e−} + NAD+ 
⟶ NADH+H+ the final H+ is frequently omitted (Figure 3). One hydrogen atom is 
transferred directly from the hydrogen donor (e.g. malate) to NAD+ without dilution by 
the aqueous H+ whereas the other forms an aqueous hydrogen ion (32). The 
equilibrium (Eq. e in Table 1) depends on pH. In contrast, Eq. 1b (Eq. f in Table 1) is 
independent of pH. The fundamental difference between 2H+ and 2{H++e−} in Eq. e 
(Table 1) is lost in representations such as Figures 3g,h.  
 

 In summary, two-electron oxidation of succinate is redox-linked to reduction of 
SDHA-FAD to SDHA-FADH2, and the final electron transfer step in CII reduces UQ to 
UQH2. In terms of electron entry into CII many publications show it in the wrong 
direction, i.e. oxidation of FADH2 as electron donor from the TCA cycle to CII (Figure 
3). This erroneous presentation has the logical consequence of putting CII into the 
wrong position of mitochondrial core energy metabolism. Several electron transfer 
pathways reduce the prosthetic group FAD of different enzymes to FADH2 and then 
converge separately at the Q-junction (Figure 4). In ambiguous graphs, CII can be 
seen as an enzyme receiving reducing equivalents from FADH2 and thus mitigating 
electron transfer into the Q-junction not only from succinate in the TCA cycle but from 
other flavoprotein-catalyzed pathways feeding into the membrane-ETS. This is 
incorrect as clarified in the next sections. 
 
Complex II and fatty acid oxidation 
 

 In the β-oxidation cycle of fatty acid oxidation (FAO), acetyl-CoA and the reducing 
equivalents FADH2 and NADH are formed in reactions catalyzed by mt-membrane or 
matrix acyl-CoA dehydrogenases (ACADs) and hydroxyacyl-CoA dehydrogenases 
(HADs), respectively (358). The ACADs are flavoproteins containing FAD/FADH2 as 
prosthetic group (358). The FADH2 of the ACADs is reoxidized by reducing FAD 
noncovalently bound to electron transferring flavoprotein ETF (358-362). Comparable 
to electron transfer from CIII to CIV by the heme group of cytochrome c (363), the small 
redox protein ETF mediates the transfer of reducing equivalents from FADH2 of ACADs 
to the respiratory Complex of the membrane-ETS called electron flavoprotein 
dehydrogenase ETFDH (361) or electron transfer flavoprotein:ubiqinone 
oxidoreductase ETF-QO (364). This ETFDH Complex (CETFDH) receives 2{H++e+} 
from FADH2 in ETF, linking electron transfer in β-oxidation to electron entry into the Q- 
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Figure 5. When 
FADH2 is 
erroneously shown 
(1) as a substrate of 
CII, then (2) a 
dubious role of CII 
in oxidation of 
FADH2 from β-
oxidation is 
suggested as a 

consequence. 
Zoom into figures (a) 
(52); (b) (71); (c) 
(226); (d) (97); (e) 
(221); (f) (228); (g) 
(284, 300); (h) (294); 
(i) (219); (j) 

paradoxical 
oxidation of FADH2 
and NADH in β-
oxidation and 
reduction by CI of 
NAD (NAD+) from β-
oxidation (56); (k) 
(296); (l) (62); (m) 
(292); (n) (83); (o) 
(350, 353-356); (p) 
(205); (q) (192); (r) 
(51) as in (66); (s) 
(349); (t) (351); (u) 
(352). 
 
 
junction independent 
of CII. CETFDH and 
CI are the respiratory 
Complexes involved 
in convergent 
electron entry into 
the Q-junction during 
FAO (Figure 4). In 
contrast to the 

membrane-ETS 
redox shuttle 
cytochrome c, ETF is 
a matrix-ETS redox 
shuttle (or a redox 
shuttle closely 
associated with the 
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mtIM on its matrix side) where multiple electron transfer pathways converge (Figure 
4a). Thus the prosthetic group FADH2 in ETF – or simply ETF – is the substrate of 
CETFDH, comparable to the substrates succinate for CII, glycerophosphate for the 
respiratory Complex glycerophosphate dehydrogenase (CGpDH), and NADH for CI at 
the Q-junction, or cytochrome c for CIV (Figure 4b). The supercomplex formed 
between CETFDH and CIII illustrates the CII-independent path of electron transfer 
from FADH2 bound to ETF into the Q-junction (361). 
 

 When FADH2 is erroneously shown free floating in the mt-matrix as a substrate 
of CII, a dubious role of CII in FAO is suggested as a consequence. In Figures 5a-m, 
FADH2 (i) is generated by the TCA cycle and β-oxidation and (ii) donates electrons 
from a misconstrued ‘FADH2 junction’ to CII (52, 56, 62, 71, 97, 219, 221, 226, 228, 
284, 292, 294, 296, 300); see also (50, 237). In Figure 5n, two alternative pathways of 
FADH2 are shown from β-oxidation to CII and CETFDH (83), similar to ref. 84 (Figure 
6j) and ref. 202. Picard and colleagues link β-oxidation directly to CII in Figure 5o used 
in five publications (350, 353-356). In Figure 5p, FADH2 from the TCA cycle and β-
oxidation donates reducing equivalents to the ‘electron transport chain’ (205), where 
‘ETC-specific respiration’ is considered to proceed through CI and CII. Compare with 
refs. 51, 104, 192, 207, 209, 216, 217, and 240 (Figures 5q,r). Combined with 
respiratory Complexes defined as CI, CII, CIII, and CIV in numerical sequence, the 
concept of a linear ‘electron transport chain’ ETC (in contrast to the convergent ETS) 
led to the presentation of linear electron flow as (NADH, FADH2) → CI → CII → CIII 
(349; Figure 5s), with a similar misconception or ambiguity in figures of refs. 129, 166, 
171, 176, 183, 224, 242, 340 (Table 2). Electron transfer is even shown to poceed from 
fatty acids through ETF to CII (351, 352) (Figure 5t,u). 
 

Lemmi et al (365) noted: ‘mitochondrial Complex II also participates in the 
oxidation of fatty acids’. This holds for the oxidation of acetyl-CoA generated in the β-
oxidation cycle and oxidized in the TCA cycle, forming NADH and succinate with 
downstream electron flow through CI and CII, respectively, into the Q-junction (Figure 
1). In contrast, electron transfer from primary flavin dehydrogenases in β-oxidation 
proceeds through ETF, which functions as the electron (2{H++e-}) carrier to CETFDH.  
 
FADH2 reducing equivalents independent of CII: glycerophosphate oxidation 
and ETF-linked pathways in addition to fatty acid oxidation 
 

Comparable to the display of a putative role of CII in FAO (Figure 5), the 
misconstrued pathway from FADH2 to CII has led to the incorrect notion that CII 
receives electrons from FADH2 formed in several branches of the ETS upstream of the 
Q-junction, particularly in the mitochondrial glycerophosphate DH Complex, CGpDH 
(59, 84, 90, 346, 366-371). ‘FADH2 is produced by acyl CoA dehydrogenase (in the β-
oxidation cycle), succinate dehydrogenase (in the TCA cycle), and glycerol-3-
phosphate dehydrogenase (reoxidation of NADH+ H+ produced in glycolysis by the 
glycerol-3-phosphate shuttle). These enzymes form part of the inner mitochondrial 
membrane in close association with Complex II’ (209). The CII ambiguity (Figure 6a) 
misleads to such direct or indirect suggestions that CII in the ETS is positioned 
downstream of CGpDH (Figures 6b-d). For carification, the glyceraldehyde-3-
phosphate shuttle (366-371) does not transfer FADH2 into the mt-matrix (Figures 6e,f). 
There is no ‘FADH2 junction’ receiving reducing equivalents and feeding electrons 
downstream into CII (59, 84, 346) (Figures 6g-j). The term 'FADH2 linked substrates' 
(91) is ambiguous and misleading. In convergent electron transfer into the Q-junction, 
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the independent part of CII played in the ETS is clarified by recognition of succinate 
(but not FADH2) as the substrate generated in the TCA cycle and feeding 2{H++e-} into 
the CII-branch of the Q-junction (Figure 4b). 
 

Figure 6. 
Ambiguous 

conclusions on a 
direct role of CII in 
the oxidation of 
glycerophosphate 

and other ‘FADH2-
linked’ pathways, 
analogous to false 
representations of 
CII involved in fatty 
acid oxidation 
(Figure 5). FADH2 
(1) formed in the mt-
matrix as a product 
of the TCA cycle 
and (2) feeding into 
CII: (a) (75); among 
312 examples of 
CII-ambiguities; and 
FADH2 (1) formed in 
the mt-matrix from 
(b) GPO1 (90), (c) 
GPD2 (371), or (d) 
GPDH (366), and 
(2) feeding into the 
ETS. GPO1, GPD2, 
and GPDH indicate 
the respiratory 
Complex CGpDH 
on the inter-
membrane side of 
the mtIM (Figure 
4b). (e), (f) and (g) 

The 
glyceraldehyde-3-

phosphate shuttle is 
erroneously shown 
to transfer the redox 
pair FAD/FADH2 
(not FADH/FADH2) 
into the mt-matrix 
(367, 359, 371). 
(h)The figure (346) 
suggests that 
electron transfer 
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into the Q-junction occurs from a common FADH2 pool generated by CII and CGpDH 
(GPD2). (i,j) The FAD/FADH2 redox system is implicated in various electron transfer 
pathways independent of CII, but the CII ambiguity does not make this sufficiently clear 
(59, 84). 
 
Conclusions 
 

 There is currently ambiguity surrounding the precise role of Complex II in core 
metabolic pathways of mitochondrial electron transfer, particularly fatty acid oxidation. 
While Complex II is not essential for fatty acid oxidation, it plays a regulatory role by 
sensing changes in metabolic demand and activating the TCA cycle for oxidation of 
acetyl-CoA depending on the metabolic conditions. This regulatory function may be 
particularly important during periods of low oxygen availability or high energy demand. 
The integration of FAO with the membrane-bound ETS (361) has significant 
implications for understanding and treating disorders related to β-oxidation and 
oxidative phosphorylation.  
 

 Do misinformed diagrams ‒ from ambiguous electron transfer to presentation of 
CII as a H+ pump (304, 342, 372-374) ‒ cast doubts on the quality of the publication? 
Authors and publishers may enjoy artistic graphs as motivational ornaments rather 
than informational design. Whether using iconic or symbolic elements in graphical 
representations, incorporating complementary text not only enhances the 
communication of intended meaning but diagrams will be improved in the process. 
Using precisely defined terminology prevents misunderstandings (2). 
 

 When peer review provides insufficient help for corrections, post-peer review by 
editors and critical readers is required for revisions of articles which may be updated 
and re-published as living communications (375). The present review aims to raise 
awareness in the scientific community about the inherent ambiguity crisis, 
complementary to addressing the widely recognized issues of the reproducibility and 
credibility crisis (376). The term ‘crisis’ is rooted etymologically in the Greek word 
krinein: meaning to ‘separate, decide, judge’. In this sense, science and 
communication in general are a continuous crisis at the edge of separating clarity or 
certainty from confusing double meaning down to fake-news. Reproducibility relates to 
the condition of repeating and confirming calculations or experiments presented in a 
published resource. Apart from critizising established textbooks (377), their 
acknowledgement with reference to expert bioenergetics reviews (11, 26) and 
terminological consistency (2) will pave the way out of the CII ambiguity crisis.  
 

 As defined in the introduction, the present critical review addresses type 2 
ambiguities in redox reactions and bioenergetic pathways involving respiratory 
Complex II and electron transfer into the Q-junction. In the 312 listed references on CII 
ambiguities, several figures show H+ or 2H+ being formed in the oxidation of FADH2. 
Formation of H+ or 2H+ in the oxidation of succinate is displayed in many more 
references which are not included here. The ambiguous use of the symbol H+ makes 
no distinction between (i) 2H+ indicating reducing equivalents 2{H++e-} participating in 
oxidoreductions, (ii) H+ in chemiosmotic translocation across a membrane, and (iii) H+ 
in acid/base reactions (Table 2). Several type 2 CII-ambiguities, however, may be more 
appropriately classified as errors and incorrect representations of scientific facts, 
resulting from ignorance of the relevant literature. On the other side of the spectrum 
we find productive type 1 ambiguities (30), when different points of view lead to 
innovation. A prominent case of ambiguity in the grey zone between types 1 and 2 has 
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been uniquely demonstrated by analysis of the popular notion of ‘oxidative stress’ – a 
term more frequently found than ‘mitochondria’ in PubMed, widely used with vague 
definitions and without expression by numerical values and corresponding units (378). 
Another example closer to type 2 ambiguity is the use of the terms and experimental 
application of ‘hypoxia’ and ‘normoxia’ in bioenergetics, when air-level normoxic 
conditions for isolated mitochondria and cultured cells are effectively hyperoxic and 
may cause oxidative damage (379, 380). Another ambiguity in bioenergetics links to 
the confusing use of the terms uncoupling, decoupling, dyscoupling, where rigorous 
definition is warranted (2). Linking bioenergetics to physical chemistry and the 
thermodynamics of irreversible processes, the ambiguous use (type 1) of the terms 
force and pressure (381-385) has deep consequences on the enigmatic concept of 
non-ohmic flux-force relationships in the context of mitochondrial membrane potential 
and the protonmotive force (6).  
 

 The present review adds Complex II ambiguities to the growing list. The trust in 
the science of bioenergetics is at stake ― the trust of students, the general public, 
granting agencies, and stakeholders in the research-based health system. Clarification 
instead of perpetuation of Complex II ambiguities leads to a better representation of 
fundamental concepts of bioenergetics and helps to maintain the high scientific 
standards required for translating knowledge on metabolism into clinical solutions for 
mitochondrial diseases. 
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Abbreviations and definitions 
 

2{H++e−} redox equivalents in H+-linked electron transfer 
CI Complex I 
CII Complex II, SDH 
CETFDH electron transferring flavoprotein dehydrogenase Complex  
CGpDH mt-glycerophosphate dehydrogenase Complex 
DH dehydrogenase 
FAD oxidized flavin adenine dinucleotide 
FADH2 reduced flavin adenine dinucleotide 
FAO fatty acid oxidation 
FMN oxidized flavin mononucleotide 
FMNH2 reduced flavin mononucleotide 
mt-matrix mitochondrial matrix 
mtIM mitochondrial inner membrane 
NAD nicotinamide adenine dinucleotide, oxidation state is not implied 
NAD+ oxidized nicotinamide adenine dinucleotide 
NADH2 reduced nicotinamide adenine dinucleotide 
Q ETS-reactive coenzyme Q, oxidation state is not implied 
QFR mena-quinol-fumarate oxidoreductase 
SQR succinate-ubiquinone oxidoreductase 
SDH succinate dehydrogenase, CII 
TCA cycle tricarboxylic acid cycle 
 
Cofactor: ‘an organic molecule or ion (usually a metal ion) that is required by an 

enzyme for its activity. It may be attached either loosely (coenzyme) or 
tightly (prosthetic group)’ 
(https://www.ebi.ac.uk/chebi/searchId.do?chebiId=23357; retrieved 
2023-09-23). 

Coenzyme or cosubstrate: a cofactor that is attached loosely and transiently to an 
enzyme, the ‘dissociable, low-relative-molecular-mass active group of 
an enzyme which transfers chemical groups, hydrogen, or electrons. A 
coenzyme binds with its associated protein (apoenzyme) to form the 
active enzyme (holoenzyme)‘ (387). 

Prosthetic group: ‘a tightly bound, specific nonpolypeptide unit in a protein 
determining and involved in its biological activity’ 
(https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:26348; 
retrieved 2023-09-23). 

 


